Copyright: © 2024 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Evaluation of the effectiveness of etiotropic therapy with linezolid and bacteriophage in a mouse model for staphylococcal infection

About authors

1 Lopukhin Federal Research and Clinical Center Of Physical-Chemical Medicine under the Federal Medical Biological Agency, Moscow, Russia

2 State Research Center for Applied Microbiology and Biotechnology, Obolensk, u.d. Serpukhov, Moscow region, Russia

About paper

Funding: the work was supported by the Russian Science Foundation grant No. 22-15-00443, https://rscf.ru/project/22-15-00443/

Author contribution: Kornienko MA, Kuzin VV — study planning, data collection and processing, article authoring; Abdraimova NK — data collection and processing, Gorodnichev RB — study planning, data collection and processing; Shitikov EA — study planning, data processing, article authoring.

Compliance with ethical standards: the study was approved by the Ethics Committee of the State Research Center for Applied Microbiology and Biotechnology (Veterinary Minutes #3-2024 of June 10, 2024), performed in accordance with the requirements of Federal Law #61-FZ of 12.04.2010 "On the Circulation of Medicines"; Order #708N of the Ministry of Health of the Russian Federation of 23.08.2010 "On Approval of the Rules of Laboratory Practice"; SanPiN 3.3686-21 "Sanitary and epidemiological requirements for prevention of infectious diseases."

Received: 2024-11-06 Accepted: 2024-12-09 Published online: 2024-12-25
|
  1. Cheung GYC, Bae JS; Otto M. Pathogenicity and Virulence of Staphylococcus Aureus. Virulence 2021; 12: 547–69, DOI: 10.1080/21505594.2021.1878688.
  2. Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus Aureus. Front Cell Infect Microbiol. 2020; 10: 107, DOI: 10.3389/fcimb.2020.00107.
  3. Ikuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T, et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet. 2022; 400: 2221–48, DOI: 10.1016/S0140-6736(22)02185-7.
  4. Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, Cater K Knežević P, Winogradow C, Amaro K, et al. Bacteriophages and Antibiotic Interactions in Clinical Practice: What We Have Learned so Far. J Biomed Sci. 2022; 29: 23, DOI: 10.1186/s12929-022-00806-1.
  5. Dickey J, Perrot V. Adjunct Phage Treatment Enhances the Effectiveness of Low Antibiotic Concentration against Staphylococcus Aureus Biofilms in Vitro. PLoS ONE. 2019; 14: e0209390, DOI: 10.1371/journal.pone.0209390.
  6. Kumaran D, Taha M, Yi Q, Ramirez-Arcos S, Diallo J-S, Carli A, et al. Does Treatment Order Matter? Investigating the Ability of Bacteriophage to Augment Antibiotic Activity against Staphylococcus Aureus Biofilms. Front Microbiol. 2018; 9: 127, DOI: 10.3389/fmicb.2018.00127.
  7. Kornienko M, Kuptsov N, Gorodnichev R, Bespiatykh D, Guliaev A, Letarova M, et al. Contribution of Podoviridae and Myoviridae Bacteriophages to the Effectiveness of Anti-Staphylococcal Therapeutic Cocktails. Sci Rep. 2020; 10: 18612, DOI: 10.1038/s41598-020-75637-x.
  8. Leskinen K, Tuomala H, Wicklund A, Horsma-Heikkinen J, Kuusela P, Skurnik M, et al. Characterization of vB_SauM-fRuSau02, a Twort-Like Bacteriophage Isolated from a Therapeutic Phage Cocktail. Viruses. 2017; 9: 258, DOI: 10.3390/v9090258.
  9. Abatángelo V, Peressutti Bacci N, Boncompain CA, Amadio AF, Carrasco S, Suárez CA, et al. Correction: Broad-Range Lytic Bacteriophages That Kill Staphylococcus Aureus Local Field Strains. PLoS ONE. 2017; 12: e0187387, DOI: 10.1371/journal.pone.0187387.
  10. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2011; 52 (3): 285–92. Available from: https://doi.org/10.1093/cid/cir034.
  11. Bozdogan B, Appelbaum PC. Oxazolidinones: Activity, Mode of Action, and Mechanism of Resistance. International Journal of Antimicrobial Agents. 2004; 23: 113–9. DOI: 10.1016/j.ijantimicag.2003.11.003.
  12. Hui L-A, Bodolea C, Vlase L, Hiriscau EI, Popa A. Linezolid Administration to Critically Ill Patients: Intermittent or Continuous Infusion? A Systematic Literature Search and Review. Antibiotics. 2022; 11: 436. DOI: 10.3390/antibiotics11040436.
  13. Abdraimova NK, Kornienko MA, Bespiatykh DA, Kuptsov NS, Gorodnichev RB, Shitikov EA. Combined effects of bacteriophage vB_ SauM-515A1 and antibiotics on the Staphylococcus aureus clinical isolates. Bulletin of RSMU. 2022; DOI: 10.24075/brsmu.2022.052.
  14. Kaur S, Harjai K, Chhibber S. Bacteriophage Mediated Killing of Staphylococcus Aureus In Vitro on Orthopaedic K Wires in Presence of Linezolid Prevents Implant Colonization. PLoS ONE. 2014; 9: e90411. DOI:10.1371/journal.pone.0090411.
  15. Wang B, Xu Y, Zhao H, Wang X, Rao L, Guo Y, et al. Methicillin- Resistant Staphylococcus Aureus in China: A Multicentre Longitudinal Study and Whole-Genome Sequencing. Emerging Microbes & Infections. 2022; 11: 532–42. DOI: 10.1080/22221751.2022.2032373.
  16. Chhibber S, Kaur T. Sandeep Kaur Co-Therapy Using Lytic Bacteriophage and Linezolid: Effective Treatment in Eliminating Methicillin Resistant Staphylococcus Aureus (MRSA) from Diabetic Foot Infections. PLoS ONE. 2013; 8: e56022. DOI: 10.1371/journal.pone.0056022.
  17. Kaur S, Chhibber S. A Mouse Air Pouch Model for Evaluating the Anti-Bacterial Efficacy of Phage MR-5 in Resolving Skin and Soft Tissue Infection Induced by Methicillin-Resistant Staphylococcus Aureus. Folia Microbiol. 2021; 66: 959–72, DOI: 10.1007/s12223-021-00895-9.
  18. Kaur S, Harjai K, Chhibber S. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. Aureus (MRSA) Mediated Orthopaedic Device Related Infections. PLoS ONE. 2016; 11: e0157626, DOI: 10.1371/journal.pone.0157626.
  19. Berryhill BA, Huseby DL, McCall IC, Hughes D, Levin BR. Evaluating the Potential Efficacy and Limitations of a Phage for Joint Antibiotic and Phage Therapy of Staphylococcus Aureus Infections. Proc Natl Acad Sci USA. 2021; 118, e2008007118. DOI: 10.1073/pnas.2008007118.
  20. Kumaran D, Taha M, Yi Q, Ramirez-Arcos S, Diallo J-S, Carli A, Abdelbary H. Does Treatment Order Matter? Investigating the Ability of Bacteriophage to Augment Antibiotic Activity against Staphylococcus Aureus Biofilms. Front Microbiol. 2018; 9: 127. DOI: 10.3389/fmicb.2018.00127.
  21. Kornienko M, Fisunov G, Bespiatykh D, Kuptsov N, Gorodnichev R, Klimina K, et al. Transcriptional Landscape of Staphylococcus Aureus Kayvirus Bacteriophage vB_SauM-515A1. Viruses. 2020; 12: 1320. DOI: 10.3390/v12111320.
  22. Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of Bacteriophages Using the Small Drop Plaque Assay System. In: Clokie MRJ, Kropinski AM, editors. Bacteriophages. Methods in Molecular Biology. Humana Press: Totowa, NJ. 2009; p. 81–85.
  23. Guide for the Care and Use of Laboratory Animals. National Academies Press: Washington, D.C., 2011.
  24. García P, Moscoso M, Fernández MC, Fuentes-Valverde V, Pérez A, Bou G. Comparison of the in Vivo Efficacy of Ceftaroline Fosamil, Vancomycin and Daptomycin in a Murine Model of Methicillin-Resistant Staphylococcus Aureus Bacteraemia. International Journal of Antimicrobial Agents. 2023; 62: 106836. DOI: 10.1016/j.ijantimicag.2023.106836.
  25. Suligoy CM, Díaz RE, Gehrke A-K, Ring N, Yebra G, Alves J, et al. Acapsular Staphylococcus Aureus with a Non-Functional Agr Regains Capsule Expression after Passage through the Bloodstream in a Bacteremia Mouse Model. Sci Rep. 2020; 10: 14108 DOI: 10.1038/s41598-020-70671-1.
  26. Kim HK, Missiakas D, Schneewind O. Mouse Models for Infectious Diseases Caused by Staphylococcus Aureus. Journal of Immunological Methods. 2014; 410: 88–99, DOI: 10.1016/j.jim.2014.04.007.
  27. Oduor JMO, Onkoba N, Maloba F, Arodi WO, Nyachieo A. Efficacy of Lytic Staphylococcus Aureus Bacteriophage against Multidrug-Resistant Staphylococcus Aureus in Mice. J Infect Dev Ctries. 2016; 10: 1208–13. DOI: 10.3855/jidc.7931.
  28. Sharma-Kuinkel BK, Zhang Y, Yan Q, Ahn SH, Fowler VG. Host Gene Expression Profiling and In Vivo Cytokine Studies to Characterize the Role of Linezolid and Vancomycin in Methicillin- Resistant Staphylococcus Aureus (MRSA) Murine Sepsis Model. PLoS ONE. 2013; 8: e60463. DOI: 10.1371/journal.pone.0060463.
  29. Gordon O, Dikeman DA, Ortines RV, Wang Y, Youn C, Mumtaz M, et al. The Novel Oxazolidinone TBI-223 Is Effective in Three Preclinical Mouse Models of Methicillin-Resistant Staphylococcus Aureus Infection. Microbiol Spect. 2022; 10: e02451-21, DOI: 10.1128/spectrum.02451-21.
  30. Fujiki J, Nakamura T, Nakamura K, Nishida K, Amano Y, Watanabe Y, et al. Biological properties of Staphylococcus virus –SA012 for phage therapy. Scientific reports. 2022; 12 (1): 21297. Available from: https://doi.org/10.1038/s41598-022-25352-6.
  31. Plumet L, Ahmad-Mansour N, Dunyach-Remy C, Kissa K, Sotto A, Lavigne J-P, et al. Bacteriophage Therapy for Staphylococcus Aureus Infections: A Review of Animal Models, Treatments, and Clinical Trials. Front Cell Infect Microbiol. 2022; 12: 907314. DOI: 10.3389/fcimb.2022.907314.