Авторские права: © 2024 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Оценка эффективности этиотропной терапии линезолидом и бактериофагом на мышиной модели стафилококковой инфекции

Информация об авторах

1 Федеральный научно-клинический центр физико-химической медицины имени Ю. М. Лопухина Федерального медико-биологического агентства, Москва, Россия

2 Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора, Оболенск, Россия

Информация о статье

Финансирование: исследование выполнено за счет гранта Российского научного фонда № 22-15-00443, https://rscf.ru/project/22-15-00443/

Вклад авторов: М. А. Корниенко, В. В. Кузин — план исследований, набор и обработка данных, написание статьи; Н. К. Абдраймова — набор и обработка данных, Р. Б. Городничев — план исследований, набор и обработка данных; Е. А. Шитиков — план исследований, обработка данных, написание статьи.

Соблюдение этических стандартов: исследование одобрено этическим комитетом ФБУН ГНЦ ПМБ (ветеринарный протокол № 3-2024 от 10 июня 2024 г.), выполнено в соответствии с требованиями Федерального закона от 12.04.2010 г. № 61-ФЗ «Об обращении лекарственных средств»; Приказа Минздравсоцразвития России от 23.08.2010 № 708Н «Об утверждении правил лабораторной практики»; СанПиН 3.3686-21 «Санитарно- эпидемиологические требования по профилактике инфекционных болезней».

Статья получена: 06.11.2024 Статья принята к печати: 09.12.2024 Опубликовано online: 25.12.2024
|
  1. Cheung GYC, Bae JS; Otto M. Pathogenicity and Virulence of Staphylococcus Aureus. Virulence 2021; 12: 547–69, DOI: 10.1080/21505594.2021.1878688.
  2. Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus Aureus. Front Cell Infect Microbiol. 2020; 10: 107, DOI: 10.3389/fcimb.2020.00107.
  3. Ikuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T, et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet. 2022; 400: 2221–48, DOI: 10.1016/S0140-6736(22)02185-7.
  4. Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, Cater K Knežević P, Winogradow C, Amaro K, et al. Bacteriophages and Antibiotic Interactions in Clinical Practice: What We Have Learned so Far. J Biomed Sci. 2022; 29: 23, DOI: 10.1186/s12929-022-00806-1.
  5. Dickey J, Perrot V. Adjunct Phage Treatment Enhances the Effectiveness of Low Antibiotic Concentration against Staphylococcus Aureus Biofilms in Vitro. PLoS ONE. 2019; 14: e0209390, DOI: 10.1371/journal.pone.0209390.
  6. Kumaran D, Taha M, Yi Q, Ramirez-Arcos S, Diallo J-S, Carli A, et al. Does Treatment Order Matter? Investigating the Ability of Bacteriophage to Augment Antibiotic Activity against Staphylococcus Aureus Biofilms. Front Microbiol. 2018; 9: 127, DOI: 10.3389/fmicb.2018.00127.
  7. Kornienko M, Kuptsov N, Gorodnichev R, Bespiatykh D, Guliaev A, Letarova M, et al. Contribution of Podoviridae and Myoviridae Bacteriophages to the Effectiveness of Anti-Staphylococcal Therapeutic Cocktails. Sci Rep. 2020; 10: 18612, DOI: 10.1038/s41598-020-75637-x.
  8. Leskinen K, Tuomala H, Wicklund A, Horsma-Heikkinen J, Kuusela P, Skurnik M, et al. Characterization of vB_SauM-fRuSau02, a Twort-Like Bacteriophage Isolated from a Therapeutic Phage Cocktail. Viruses. 2017; 9: 258, DOI: 10.3390/v9090258.
  9. Abatángelo V, Peressutti Bacci N, Boncompain CA, Amadio AF, Carrasco S, Suárez CA, et al. Correction: Broad-Range Lytic Bacteriophages That Kill Staphylococcus Aureus Local Field Strains. PLoS ONE. 2017; 12: e0187387, DOI: 10.1371/journal.pone.0187387.
  10. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2011; 52 (3): 285–92. Available from: https://doi.org/10.1093/cid/cir034.
  11. Bozdogan B, Appelbaum PC. Oxazolidinones: Activity, Mode of Action, and Mechanism of Resistance. International Journal of Antimicrobial Agents. 2004; 23: 113–9. DOI: 10.1016/j.ijantimicag.2003.11.003.
  12. Hui L-A, Bodolea C, Vlase L, Hiriscau EI, Popa A. Linezolid Administration to Critically Ill Patients: Intermittent or Continuous Infusion? A Systematic Literature Search and Review. Antibiotics. 2022; 11: 436. DOI: 10.3390/antibiotics11040436.
  13. Абдраймова Н. К., Корниенко М. А. Беспятых Д. А., Купцов Н. С., Городничев Р. Б., Шитиков Е. А. Комбинированное воздействие бактериофага VB_SAUM-515A1 и антибиотиков на клинические изоляты Staphylococcus aureus. Вестник РГМУ. 2022; DOI: 10.24075/vrgmu.2022.052.
  14. Kaur S, Harjai K, Chhibber S. Bacteriophage Mediated Killing of Staphylococcus Aureus In Vitro on Orthopaedic K Wires in Presence of Linezolid Prevents Implant Colonization. PLoS ONE. 2014; 9: e90411. DOI:10.1371/journal.pone.0090411.
  15. Wang B, Xu Y, Zhao H, Wang X, Rao L, Guo Y, et al. Methicillin- Resistant Staphylococcus Aureus in China: A Multicentre Longitudinal Study and Whole-Genome Sequencing. Emerging Microbes & Infections. 2022; 11: 532–42. DOI: 10.1080/22221751.2022.2032373.
  16. Chhibber S, Kaur T. Sandeep Kaur Co-Therapy Using Lytic Bacteriophage and Linezolid: Effective Treatment in Eliminating Methicillin Resistant Staphylococcus Aureus (MRSA) from Diabetic Foot Infections. PLoS ONE. 2013; 8: e56022. DOI: 10.1371/journal.pone.0056022.
  17. Kaur S, Chhibber S. A Mouse Air Pouch Model for Evaluating the Anti-Bacterial Efficacy of Phage MR-5 in Resolving Skin and Soft Tissue Infection Induced by Methicillin-Resistant Staphylococcus Aureus. Folia Microbiol. 2021; 66: 959–72, DOI: 10.1007/s12223-021-00895-9.
  18. Kaur S, Harjai K, Chhibber S. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. Aureus (MRSA) Mediated Orthopaedic Device Related Infections. PLoS ONE. 2016; 11: e0157626, DOI: 10.1371/journal.pone.0157626.
  19. Berryhill BA, Huseby DL, McCall IC, Hughes D, Levin BR. Evaluating the Potential Efficacy and Limitations of a Phage for Joint Antibiotic and Phage Therapy of Staphylococcus Aureus Infections. Proc Natl Acad Sci USA. 2021; 118, e2008007118. DOI: 10.1073/pnas.2008007118.
  20. Kumaran D, Taha M, Yi Q, Ramirez-Arcos S, Diallo J-S, Carli A, Abdelbary H. Does Treatment Order Matter? Investigating the Ability of Bacteriophage to Augment Antibiotic Activity against Staphylococcus Aureus Biofilms. Front Microbiol. 2018; 9: 127. DOI: 10.3389/fmicb.2018.00127.
  21. Kornienko M, Fisunov G, Bespiatykh D, Kuptsov N, Gorodnichev R, Klimina K, et al. Transcriptional Landscape of Staphylococcus Aureus Kayvirus Bacteriophage vB_SauM-515A1. Viruses. 2020; 12: 1320. DOI: 10.3390/v12111320.
  22. Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of Bacteriophages Using the Small Drop Plaque Assay System. In: Clokie MRJ, Kropinski AM, editors. Bacteriophages. Methods in Molecular Biology. Humana Press: Totowa, NJ. 2009; p. 81–85.
  23. Guide for the Care and Use of Laboratory Animals. National Academies Press: Washington, D.C., 2011.
  24. García P, Moscoso M, Fernández MC, Fuentes-Valverde V, Pérez A, Bou G. Comparison of the in Vivo Efficacy of Ceftaroline Fosamil, Vancomycin and Daptomycin in a Murine Model of Methicillin-Resistant Staphylococcus Aureus Bacteraemia. International Journal of Antimicrobial Agents. 2023; 62: 106836. DOI: 10.1016/j.ijantimicag.2023.106836.
  25. Suligoy CM, Díaz RE, Gehrke A-K, Ring N, Yebra G, Alves J, et al. Acapsular Staphylococcus Aureus with a Non-Functional Agr Regains Capsule Expression after Passage through the Bloodstream in a Bacteremia Mouse Model. Sci Rep. 2020; 10: 14108 DOI: 10.1038/s41598-020-70671-1.
  26. Kim HK, Missiakas D, Schneewind O. Mouse Models for Infectious Diseases Caused by Staphylococcus Aureus. Journal of Immunological Methods. 2014; 410: 88–99, DOI: 10.1016/j.jim.2014.04.007.
  27. Oduor JMO, Onkoba N, Maloba F, Arodi WO, Nyachieo A. Efficacy of Lytic Staphylococcus Aureus Bacteriophage against Multidrug-Resistant Staphylococcus Aureus in Mice. J Infect Dev Ctries. 2016; 10: 1208–13. DOI: 10.3855/jidc.7931.
  28. Sharma-Kuinkel BK, Zhang Y, Yan Q, Ahn SH, Fowler VG. Host Gene Expression Profiling and In Vivo Cytokine Studies to Characterize the Role of Linezolid and Vancomycin in Methicillin- Resistant Staphylococcus Aureus (MRSA) Murine Sepsis Model. PLoS ONE. 2013; 8: e60463. DOI: 10.1371/journal.pone.0060463.
  29. Gordon O, Dikeman DA, Ortines RV, Wang Y, Youn C, Mumtaz M, et al. The Novel Oxazolidinone TBI-223 Is Effective in Three Preclinical Mouse Models of Methicillin-Resistant Staphylococcus Aureus Infection. Microbiol Spect. 2022; 10: e02451-21, DOI: 10.1128/spectrum.02451-21.
  30. Fujiki J, Nakamura T, Nakamura K, Nishida K, Amano Y, Watanabe Y, et al. Biological properties of Staphylococcus virus –SA012 for phage therapy. Scientific reports. 2022; 12 (1): 21297. Available from: https://doi.org/10.1038/s41598-022-25352-6.
  31. Plumet L, Ahmad-Mansour N, Dunyach-Remy C, Kissa K, Sotto A, Lavigne J-P, et al. Bacteriophage Therapy for Staphylococcus Aureus Infections: A Review of Animal Models, Treatments, and Clinical Trials. Front Cell Infect Microbiol. 2022; 12: 907314. DOI: 10.3389/fcimb.2022.907314.