Copyright: © 2024 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

REVIEW

Approaches to therapy of Crigler–Najjar syndrome type 1 in children

Gautier MS, Degtyareva AV, Degtyarev DN, Ushakova LV, Filippova EA, Albegova MB, Bavykin AS, Savilova AM, Zhdanova SI
About authors

Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia

Correspondence should be addressed: Marina S. Gautier
Akademika Oparina, 4/B, Moscow, 117513, Russia; moc.liamg@reituag.aniram

About paper

Author contribution: Degtyareva AV, Degtyarev DN, Ushakova LV, Filippova EA, Albegova MB, Bavykin AS, Savilova AM, Zhdanova SI — contribution to the review concept and structure, editing; Gautier MS — literature search, writing the review; Borodulina RR — literature search, contribution to writing the review.

Received: 2024-12-06 Accepted: 2024-12-20 Published online: 2024-12-30
|
  1. Ebrahimi A, Rahim F. Crigler–Najjar Syndrome: Current Perspectives and the Application of Clinical Genetics. Endocr Metab Immune Disord Drug Targets. 2018; 18 (3): 201–11.
  2. Aronson SJ, et al. Disease burden and management of Crigler– Najjar syndrome: Report of a world registry. Liver International. 2022; 42 (7): 1593–604.
  3. Strauss KA, et al. Crigler–Najjar Syndrome Type 1: Pathophysiology, Natural History, and Therapeutic Frontier. Hepatology. 2020; 71 (6): 1923–39.
  4. Kovačić Perica M, et al. Case report: Crigler–Najjar syndrome type 1 in Croatia—more than a one in a million: a case series. Front Pediatr. 2023; 11.
  5. Ilchenko Lyu, et al. Nasledstvennaja nekon#jugirovannaja giperbilirubinemija (sochetanie sindroma Kriglera–Najjara II tipa i sindroma Zhil'bera). Hepatology and Gastroenterology. 2021; 5 (1): 79–84. Russian.
  6. Ivanova AA, Maksimov VN. Molekuljarno-geneticheskie aspekty sindroma Zhil'bera, sindromov Kriglera–Najjara I i II tipov. Jeksperimental'naja i klinicheskaja gastrojenterologija. 2023; 8: 56–62. Russian.
  7. Iskander I, et al. Serum Bilirubin and Bilirubin/Albumin Ratio as Predictors of Bilirubin Encephalopathy. Pediatrics. 2014; 134 (5): e1330–e1339.
  8. Voronchihina AS, Spivakovskij YuM. Klinicheskij sluchaj pozdnej diagnostiki sindroma Kriglera–Najjara u rebenka 5 let. 2024; s. 950–2. Russian.
  9. Karzhavina LI, Efishova SG, Tamahina NV. Klinicheskij sluchaj sindroma Kriglera–Najjara 1-go tipa u rebenka pervogo goda zhizni. 2022; s. 85–89. Russian.
  10. Degtyareva AV. Sindrom Kriglera–Najara. Rossijskij vestnik perinatologii i pediatrii. 1999; 44 (4): 44–48. Russian.
  11. Shapiro SM, Riordan SM. Review of bilirubin neurotoxicity II: preventing and treating acute bilirubin encephalopathy and kernicterus spectrum disorders. Pediatr Res. 2020; 87 (2): 332–7.
  12. Shapiro S, et al. The Neurological Sequelae of Neonatal Hyperbilirubinemia: Definitions, Diagnosis and Treatment of the Kernicterus Spectrum Disorders (KSDs). Curr Pediatr Rev. 2017; 13.
  13. Mitchell E, et al. Hepatic Parenchymal Injury in Crigler–Najjar Type I. J Pediatr Gastroenterol Nutr. 2018; 66 (4): 588–94.
  14. Bortolussi G, Muro AF. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opin Orphan Drugs. 2018; 6 (7): 425–39.
  15. Dhawan A, et al. Disease burden of Crigler–Najjar syndrome: Systematic review and future perspectives. J Gastroenterol Hepatol. 2020; 35 (4): 530–43.
  16. Wilson JHP, et al. Recommendations for Pregnancies in Patients with Crigler–Najjar Syndrome. 2012; c. 59–62.
  17. Bansal S, et al. Effects of high bilirubin level in pregnancy in Crigler–Najjar syndrome type 2: An extremely rare but important clinical entity to recognize. Med J Armed Forces India. 2023; 79 (5): 597–600.
  18. Hannam S, et al. Normal neurological outcome in two infants treated with exchange transfusions born to mothers with Crigler– Najjar Type 1 disorder. Eur J Pediatr. 2009; 168 (4): 427–9.
  19. Kadakol A, et al. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Crigler–Najjar and Gilbert syndromes: Correlation of genotype to phenotype. Hum Mutat. 2000; 16 (4): 297–306.
  20. Ebrahimi A, Rahim F. Crigler–Najjar Syndrome: Current Perspectives and the Application of Clinical Genetics. Endocr Metab Immune Disord Drug Targets. 2018; 18 (3): 201–11.
  21. Canu G, et al. Gilbert and Crigler Najjar syndromes: An update of the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene mutation database. Blood Cells Mol Dis. 2013; 50 (4): 273–80.
  22. Tcaciuc E, Podurean M, Tcaciuc A. Management of Crigler–Najjar syndrome. Med Pharm Rep. 2021; 94 (1): S64–S67.
  23. Itoh S, Onishi S. Kinetic study of the photochemical changes of (ZZ) -bilirubin IX α bound to human serum albumin. Demonstration of (EZ) -bilirubin IX α as an intermediate in photochemical changes from (ZZ) -bilirubin IX α to (EZ) -cyclobilirubin IX α. Biochemical Journal. 1985; 226 (1): 251–8.
  24. Faulhaber FRS, Procianoy RS, Silveira RC. Side Effects of Phototherapy on Neonates. American Journal of Perinatology. 2019; 36 (3): 252–7.
  25. Zarkesh M, et al. The effect of neonatal phototherapy on serum level of interlukin-6 and white blood cells′ count. J Clin Neonatol. 2016; 5 (3): 189.
  26. Sirota L, et al. Phototherapy for neonatal hyperbilirubinemia affects cytokine production by peripheral blood mononuclear cells. Eur J Pediatr. 1999; 158 (11): 910–3.
  27. Procianoy R, et al. The Influence of Phototherapy on Serum Cytokine Concentrations in Newborn Infants. Am J Perinatol. 2010; 27 (05): 375–9.
  28. Newman TB, et al. Retrospective Cohort Study of Phototherapy and Childhood Cancer in Northern California. Pediatrics. 2016; 137 (6).
  29. Berg P. Is Phototherapy in Neonates a Risk Factor for Malignant Melanoma Development? Arch Pediatr Adolesc Med. 1997; 151 (12): 1185.
  30. Tham EH, et al. Phototherapy for neonatal hyperbilirubinemia and childhood eczema, rhinitis and wheeze. Pediatr Neonatol. 2019; 60 (1): 28–34.
  31. Kuzniewicz MW, et al. Hyperbilirubinemia, Phototherapy, and Childhood Asthma. Pediatrics. 2018; 142 (4).
  32. Fda. Package Insert — HEMGENIX.
  33. Collaud F, et al. Preclinical Development of an AAV8-hUGT1A1 Vector for the Treatment of Crigler–Najjar Syndrome. Mol Ther Methods Clin Dev. 2019; 12: 157–74.
  34. D’Antiga L, et al. Gene Therapy in Patients with the Crigler–Najjar Syndrome. New England Journal of Medicine. 2023; 389 (7): 620–31.
  35. Aronson SJ, Ronzitti G, Bosma PJ. What’s next in gene therapy for Crigler–Najjar syndrome? Expert Opinion on Biological Therapy. 2023; 23 (2): 119–21.
  36. George LA, et al. Long-Term Follow-Up of the First in Human Intravascular Delivery of AAV for Gene Transfer: AAV2-hFIX16 for Severe Hemophilia B. Molecular Therapy. 2020; 28 (9): 2073–82.
  37. Sabatino DE, et al. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Molecular Therapy. 2022; 30 (8): 2646–63.
  38. Aronson SJ, et al. Prevalence and Relevance of Pre-Existing Anti-Adeno-Associated Virus Immunity in the Context of Gene Therapy for Crigler–Najjar Syndrome. Hum Gene Ther. 2019; 30 (10): 1297–305.
  39. Bortolussi G, Muro AF. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opin Orphan Drugs. 2018; 6 (7): 425–39.
  40. Seppen J, et al. Adeno-associated Virus Vector Serotypes Mediate Sustained Correction of Bilirubin UDP Glucuronosyltransferase Deficiency in Rats. Molecular Therapy. 2006; 13 (6): 1085–92.
  41. Bortolussi G, Muro AF. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opin Orphan Drugs. 2018; 6 (7): 425–439.
  42. Fagiuoli S, et al. Monogenic diseases that can be cured by liver transplantation. J Hepatol. 2013; 59 (3): 595–612.
  43. Di Dato F, D’Uonno G, Iorio R. Crigler–Najjar syndrome: looking to the future does not make us forget the present. Orphanet Journal of Rare Diseases. 2024; 19 (1).
  44. Özçay F, et al. Living Related Liver Transplantation in Crigler–Najjar Syndrome Type 1. Transplant Proc. 2009; 41 (7): 2875–7.
  45. Tu Z-H, et al. Liver transplantation in Crigler–Najjar syndrome type I disease. Hepatobiliary & Pancreatic Diseases International. 2012; 11 (5): 545–8.
  46. Schauer R, et al. Treatment of Crigler–Najjar type 1 disease: relevance of early liver transplantation. J Pediatr Surg. 2003; 38 (8): 1227–31.
  47. Graffmann N, et al. Generation of a Crigler–Najjar Syndrome Type I patient-derived induced pluripotent stem cell line CNS705 (HHUUKDi005-A). Stem Cell Res. 2021; 51.
  48. Martin–Rendon E, et al. 5–Azacytidine–treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008; 95 (2): 137–48.
  49. Fukuchi Y, et al. Human Placenta–Derived Cells Have Mesenchymal Stem/Progenitor Cell Potential. Stem Cells. 2004; 22 (5): 649–58.
  50. Kakinuma S, et al. Human Cord Blood Cells Transplanted Into Chronically Damaged Liver Exhibit Similar Characteristics to Functional Hepatocytes. Transplant Proc. 2007; 39 (1): 240–3.
  51. Yan Y, et al. Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver International. 2009; 29 (3): 356–65.
  52. Campard D, et al. Native Umbilical Cord Matrix Stem Cells Express Hepatic Markers and Differentiate Into Hepatocyte-like Cells. Gastroenterology. 2008; 134 (3): 833–48.
  53. Suhih GT, et al. Terapevticheskij jeffekt mul'tipotentnyh mezenhimal'nyh stromal'nyh kletok, poluchennyh iz pupoviny cheloveka, u pacienta s sindromom Kriglera–Najjara I tipa. Rossijskij Vestnik perinatologii i pediatrii. 2019; 64 (4): 26–34. Russian.