Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).
ОБЗОР
Подходы к терапии синдрома Криглера–Найяра 1-го типа у детей
Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени В. И. Кулакова Министерства здравоохранения России, Москва, Россия
Для корреспонденции: Марина Сергеевна Готье
ул. Академика Опарина, д. 4/Б, г. Москва, 117513, Россия; moc.liamg@reituag.aniram
Вклад авторов: А. В. Дегтярева, Д. Н. Дегтярев, Л. В. Ушакова, Е. А. Филиппова, М. Б. Албегова, А. С. Бавыкин, А. М. Савилова, С. И. Жданова — вклад в концепцию и структуру обзора, редактирование; М. С. Готье — изучение литературы, написание обзора; Р. Р. Бородулина — изучение литературы, помощь в написании обзора.
- Ebrahimi A, Rahim F. Crigler–Najjar Syndrome: Current Perspectives and the Application of Clinical Genetics. Endocr Metab Immune Disord Drug Targets. 2018; 18 (3): 201–11.
- Aronson SJ, et al. Disease burden and management of Crigler– Najjar syndrome: Report of a world registry. Liver International. 2022; 42 (7): 1593–604.
- Strauss KA, et al. Crigler–Najjar Syndrome Type 1: Pathophysiology, Natural History, and Therapeutic Frontier. Hepatology. 2020; 71 (6): 1923–39.
- Kovačić Perica M, et al. Case report: Crigler–Najjar syndrome type 1 in Croatia—more than a one in a million: a case series. Front Pediatr. 2023; 11.
- Ильченко Л. Ю. и др. Наследственная неконъюгированная гипербилирубинемия (сочетание синдрома Криглера–Найяра II типа и синдрома Жильбера). Hepatology and Gastroenterology. 2021; 5 (1): 79–84.
- Иванова А. А., Максимов В. Н. Молекулярно-генетические аспекты синдрома Жильбера, синдромов Криглера–Найяра I и II типов. Экспериментальная и клиническая гастроэнтерология. 2023; 8: 56–62.
- Iskander I, et al. Serum Bilirubin and Bilirubin/Albumin Ratio as Predictors of Bilirubin Encephalopathy. Pediatrics. 2014; 134 (5): e1330–e1339.
- Ворончихина А. С., Спиваковский Ю. М. Клинический случай поздней диагностики синдрома Криглера–Найяра у ребенка 5 лет. 2024; с. 950–2.
- Каржавина Л. И., Ефишова С. Г., Тамахина Н. В. Клинический случай синдрома Криглера–Найяра 1-го типа у ребенка первого года жизни. 2022; с. 85–89.
- Дегтярева А. В. Синдром Криглера–Найара. Российский вестник перинатологии и педиатрии. 1999; 44 (4): 44–48.
- Shapiro SM, Riordan SM. Review of bilirubin neurotoxicity II: preventing and treating acute bilirubin encephalopathy and kernicterus spectrum disorders. Pediatr Res. 2020; 87 (2): 332–7.
- Shapiro S, et al. The Neurological Sequelae of Neonatal Hyperbilirubinemia: Definitions, Diagnosis and Treatment of the Kernicterus Spectrum Disorders (KSDs). Curr Pediatr Rev. 2017; 13.
- Mitchell E, et al. Hepatic Parenchymal Injury in Crigler–Najjar Type I. J Pediatr Gastroenterol Nutr. 2018; 66 (4): 588–94.
- Bortolussi G, Muro AF. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opin Orphan Drugs. 2018; 6 (7): 425–39.
- Dhawan A, et al. Disease burden of Crigler–Najjar syndrome: Systematic review and future perspectives. J Gastroenterol Hepatol. 2020; 35 (4): 530–43.
- Wilson JHP, et al. Recommendations for Pregnancies in Patients with Crigler–Najjar Syndrome. 2012; c. 59–62.
- Bansal S, et al. Effects of high bilirubin level in pregnancy in Crigler–Najjar syndrome type 2: An extremely rare but important clinical entity to recognize. Med J Armed Forces India. 2023; 79 (5): 597–600.
- Hannam S, et al. Normal neurological outcome in two infants treated with exchange transfusions born to mothers with Crigler– Najjar Type 1 disorder. Eur J Pediatr. 2009; 168 (4): 427–9.
- Kadakol A, et al. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Crigler–Najjar and Gilbert syndromes: Correlation of genotype to phenotype. Hum Mutat. 2000; 16 (4): 297–306.
- Ebrahimi A, Rahim F. Crigler–Najjar Syndrome: Current Perspectives and the Application of Clinical Genetics. Endocr Metab Immune Disord Drug Targets. 2018; 18 (3): 201–11.
- Canu G, et al. Gilbert and Crigler Najjar syndromes: An update of the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene mutation database. Blood Cells Mol Dis. 2013; 50 (4): 273–80.
- Tcaciuc E, Podurean M, Tcaciuc A. Management of Crigler–Najjar syndrome. Med Pharm Rep. 2021; 94 (1): S64–S67.
- Itoh S, Onishi S. Kinetic study of the photochemical changes of (ZZ) -bilirubin IX α bound to human serum albumin. Demonstration of (EZ) -bilirubin IX α as an intermediate in photochemical changes from (ZZ) -bilirubin IX α to (EZ) -cyclobilirubin IX α. Biochemical Journal. 1985; 226 (1): 251–8.
- Faulhaber FRS, Procianoy RS, Silveira RC. Side Effects of Phototherapy on Neonates. American Journal of Perinatology. 2019; 36 (3): 252–7.
- Zarkesh M, et al. The effect of neonatal phototherapy on serum level of interlukin-6 and white blood cells′ count. J Clin Neonatol. 2016; 5 (3): 189.
- Sirota L, et al. Phototherapy for neonatal hyperbilirubinemia affects cytokine production by peripheral blood mononuclear cells. Eur J Pediatr. 1999; 158 (11): 910–3.
- Procianoy R, et al. The Influence of Phototherapy on Serum Cytokine Concentrations in Newborn Infants. Am J Perinatol. 2010; 27 (05): 375–9.
- Newman TB, et al. Retrospective Cohort Study of Phototherapy and Childhood Cancer in Northern California. Pediatrics. 2016; 137 (6).
- Berg P. Is Phototherapy in Neonates a Risk Factor for Malignant Melanoma Development? Arch Pediatr Adolesc Med. 1997; 151 (12): 1185.
- Tham EH, et al. Phototherapy for neonatal hyperbilirubinemia and childhood eczema, rhinitis and wheeze. Pediatr Neonatol. 2019; 60 (1): 28–34.
- Kuzniewicz MW, et al. Hyperbilirubinemia, Phototherapy, and Childhood Asthma. Pediatrics. 2018; 142 (4).
- Fda. Package Insert — HEMGENIX.
- Collaud F, et al. Preclinical Development of an AAV8-hUGT1A1 Vector for the Treatment of Crigler–Najjar Syndrome. Mol Ther Methods Clin Dev. 2019; 12: 157–74.
- D’Antiga L, et al. Gene Therapy in Patients with the Crigler–Najjar Syndrome. New England Journal of Medicine. 2023; 389 (7): 620–31.
- Aronson SJ, Ronzitti G, Bosma PJ. What’s next in gene therapy for Crigler–Najjar syndrome? Expert Opinion on Biological Therapy. 2023; 23 (2): 119–21.
- George LA, et al. Long-Term Follow-Up of the First in Human Intravascular Delivery of AAV for Gene Transfer: AAV2-hFIX16 for Severe Hemophilia B. Molecular Therapy. 2020; 28 (9): 2073–82.
- Sabatino DE, et al. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Molecular Therapy. 2022; 30 (8): 2646–63.
- Aronson SJ, et al. Prevalence and Relevance of Pre-Existing Anti-Adeno-Associated Virus Immunity in the Context of Gene Therapy for Crigler–Najjar Syndrome. Hum Gene Ther. 2019; 30 (10): 1297–305.
- Bortolussi G, Muro AF. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opin Orphan Drugs. 2018; 6 (7): 425–39.
- Seppen J, et al. Adeno-associated Virus Vector Serotypes Mediate Sustained Correction of Bilirubin UDP Glucuronosyltransferase Deficiency in Rats. Molecular Therapy. 2006; 13 (6): 1085–92.
- Bortolussi G, Muro AF. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opin Orphan Drugs. 2018; 6 (7): 425–439.
- Fagiuoli S, et al. Monogenic diseases that can be cured by liver transplantation. J Hepatol. 2013; 59 (3): 595–612.
- Di Dato F, D’Uonno G, Iorio R. Crigler–Najjar syndrome: looking to the future does not make us forget the present. Orphanet Journal of Rare Diseases. 2024; 19 (1).
- Özçay F, et al. Living Related Liver Transplantation in Crigler–Najjar Syndrome Type 1. Transplant Proc. 2009; 41 (7): 2875–7.
- Tu Z-H, et al. Liver transplantation in Crigler–Najjar syndrome type I disease. Hepatobiliary & Pancreatic Diseases International. 2012; 11 (5): 545–8.
- Schauer R, et al. Treatment of Crigler–Najjar type 1 disease: relevance of early liver transplantation. J Pediatr Surg. 2003; 38 (8): 1227–31.
- Graffmann N, et al. Generation of a Crigler–Najjar Syndrome Type I patient-derived induced pluripotent stem cell line CNS705 (HHUUKDi005-A). Stem Cell Res. 2021; 51.
- Martin–Rendon E, et al. 5–Azacytidine–treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008; 95 (2): 137–48.
- Fukuchi Y, et al. Human Placenta–Derived Cells Have Mesenchymal Stem/Progenitor Cell Potential. Stem Cells. 2004; 22 (5): 649–58.
- Kakinuma S, et al. Human Cord Blood Cells Transplanted Into Chronically Damaged Liver Exhibit Similar Characteristics to Functional Hepatocytes. Transplant Proc. 2007; 39 (1): 240–3.
- Yan Y, et al. Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver International. 2009; 29 (3): 356–65.
- Campard D, et al. Native Umbilical Cord Matrix Stem Cells Express Hepatic Markers and Differentiate Into Hepatocyte-like Cells. Gastroenterology. 2008; 134 (3): 833–48.
- Сухих Г. T., et al. Терапевтический эффект мультипотентных мезенхимальных стромальных клеток, полученных из пуповины человека, у пациента с синдромом Криглера–Найяра I типа. Российский Вестник перинатологии и педиатрии. 2019; 64 (4): 26–34.