This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).
ORIGINAL RESEARCH
Cytocompatibility of pressureless sintered porous B4C-ceramics assessed in vitro
Institute of Experimental Biology and Medicine, Meshalkin National Medical Research Center, Novosibirsk, Russia
Correspondence should be addressed: Elena V. Chepeleva
Rechkunovskaya, 15, Novosibirsk, 630055, Russia; ur.niklahsem@avelepehc_e, ur.liam@azerama
Funding: the study was supported by the Russian Science Foundation grant (project No. 25-25-00187).
Author contribution: Chepeleva EV, Khakhalkin VV — study concept and design; Chepeleva EV, Kozyr KV, Vaver AA, Khakhalkin VV — experimental procedure and data processing; Chepeleva EV — manuscript writing; Kozyr KV, Vaver AA, Khakhalkin VV — manuscript editing.
- Hoveidaei AH, Ghaseminejad-Raeini A, Esmaeili S, Sharafi A, Ghaderi A, Pirahesh K, et al. Effectiveness of synthetic versus autologous bone grafts in foot and ankle surgery: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2024; 25 (1): 539.
- Vaiani L, Boccaccio A, Uva AE, Palumbo G, Piccininni A, Guglielmi P, et al. Ceramic materials for biomedical applications: an overview on properties and fabrication processes. J Funct Biomater. 2023; 14 (3): 146.
- Bilyalov AR, Minasov BSH, Yakupov RR, Akbashev VN, Rafikova GA, Bikmeev AT, i dr. Ispol'zovanie keramicheskoj 3D-pechati dlya zadach tkanevoj inzhenerii: obzor. Politravma. 2023; (1): 89–109. DOI: 10.24412/1819-1495-2023-1-89-109. Russian.
- Vlasova TI, Arsenteva EV, Hudajberenova GD, Polyakova DI. Sovremennyj vzglyad na ispol'zovanie kostnyh zamenitelej i vozmozhnost' usileniya ih osteogennosti kletochnymi tekhnologiyami. Medicinskij vestnik Bashkortostana. 2020; 15 (2): 53–58. Russian.
- Arif U, Haider S, Haider A, Khan N, Alghyamah AA, Jamila N, et al. Biocompatible polymers and their potential biomedical applications: a review. Curr Pharm Des. 2019; 25 (34): 3608–19. DOI: 10.2174/1381612825999191011105148.
- Muhametov UF, Lyulin SV, Borzunov DYu, Gareev IF, Bejlerli OA, Yang G, i dr. Alloplasticheskie i implantacionnye materialy dlya kostnoj plastiki: obzor literatury. Kreativnaya hirurgiya i onkologiya. 2021; 11 (4): 343–53. DOI: 10.24060/2076-3093-2021-11-4-343-353. Russian.
- Popov AA, Kirsanova VA, Sviridova IK, Akhmedova SA, Filyushin MM, Sergeeva NS. Osteo-replacement properties of scleractinium coral aquaculture skeleton (experimental study). Russ J Transplantol Artif Organs. 2019; 21 (3): 121–6. DOI: 10.15825/1995-1191-2019-3-121-126.
- Brett E, Flacco J, Blackshear C, Longaker MT, Wan DC. Biomimetics of bone implants: the regenerative road. Biores Open Access. 2017; 6 (1): 1–6. DOI: 10.1089/biores.2016.0044.
- Smirnov IV, Smirnova PV, Teterina AYU, Kalita VI, Komlev VS. Formirovanie bioaktivnyh keramicheskih pokrytij na titanovyh implantatah. Geny i kletki. 2022; 17 (3): 215. Russian.
- Poprygina TD, Ponomareva NI, Gordeev SK, Samodaj VG. Impregnirovanie uglerodnyh nanostrukturnyh implantatov (UNI) kostnym gidroksiapatitom. Prikladnye informacionnye aspekty mediciny. 2022; 25 (1): 51–7. DOI: 10.18499/2070-9277-2022-25-1-51-57. Russian.
- Pankratov AS, Fadeeva IS, Yurasova YuB, Grinin VM, CHerkesov IV, Korshunov VV, i dr. Osteoinduktivnyj potencial chastichno demineralizovannogo kostnogo matriksa i vozmozhnosti ego ispol'zovaniya v klinicheskoj praktike. Vestnik RAMN. 2022; 77 (2): 143–51. Russian.
- Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: their promising roles in angiogenesis. Front Bioeng Biotechnol. 2023; 11: 1217874. DOI: 10.3389/fbioe.2023.1217874.
- Cichoń E, Guzik M. Bacterial-derived polyhydroxyalkanoate/bioceramic composites in clinical practice: state of the art and future perspectives. ACS Biomater Sci Eng. 2025; 11 (8): 4653–70.
- Fan D, Liu Y, Wang Y, Wang Q, Guo H, Cai Y, et al. 3D printing of bone and cartilage with polymer materials. Front Pharmacol. 2022; 13: 1044726.
- Marchenko ES, Gordienko II, Kozulin AA, Bajgonakova GA, Borisov SA, Garin AS, i dr. Issledovanie biosovmestimosti poristyh 3D-TiNi implantatov v usloviyah in vivo. Sibirskij zhurnal klinicheskoj i eksperimental'noj mediciny. 2024; 39 (1): 184–93. DOI: 10.29001/2073-8552-2024-39-1-184-193. Russian.
- Crovace AM, Lacitignola L, Forleo DM, Staffieri F, Francioso E, Di Meo A, et al. 3D biomimetic porous titanium (Ti6Al4V ELI) scaffolds for large bone critical defect reconstruction: an experimental study in sheep. Animals (Basel). 2020; 10 (8): 1389.
- Martynov RS, Pak AYa, Volokitin OG, Nikitin DS, Larionov KB, Povalyaev PV, i dr. Sintez poroshka karbida bora bezvakuumnym elektrodugovym metodom i poluchenie ob"emnoj keramiki metodom iskrovogo plazmennogo spekaniya. Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2023; 25 (3): 65–76. DOI: 10.15593/2224-9877/2023.3.07. Russian.
- Hahalkin VV, avtor. Sposob polucheniya legkogo keramicheskogo kompozita. Patent RF № RU2836825C1. 24.03.2025. Russian.
- GOST ISO 10993-12-2023. Izdeliya medicinskie. Ocenka biologicheskogo dejstviya medicinskih izdelij. CHast' 12. Otbor i podgotovka obrazcov dlya provedeniya issledovanij: mezhgosudarstvennyj standart: vveden 2024-06-01. Mezhgosudarstvennyj sovet po standartizacii, metrologii i sertifikacii. Moskva: Standartinform, 2023. Russian.
- GOST ISO 10993-5-2023. Izdeliya medicinskie. Ocenka biologicheskogo dejstviya medicinskih izdelij. CHast' 5. Issledovaniya na citotoksichnost' metodami in vitro: mezhgosudarstvennyj standart: vveden v dejstvie 01.06.2024. Mezhgosudarstvennyj sovet po standartizacii, metrologii i sertifikacii. Moskva: Standartinform, 2023. Russian.
- Singh P, Kaur G, Singh K, Kaur M, Kumar M, Meena R, et al. Nanostructured boron carbide (B4C): A bio-compatible and recyclable photo-catalyst for efficient wastewater treatment. Materialia. 2018; 1: 258–64.
- Stodolak-Zych E, Gubernat A, Ścisłowska-Czarnecka A, Chadzińska M, Zych L, Zientara D, et al. The influence of surface chemical composition of particles of boron carbide powders on their biological properties. Appl Surf Sci. 2022; 582: 152380.
- Wróblewska A, Szermer-Olearnik B, Szczygieł A, Węgierek-Ciura K, Mierzejewska J, Kozień D, et al. Macrophages as carriers of boron carbide nanoparticles dedicated to boron neutron capture therapy. J Nanobiotechnol. 2024; 22 (1): 183.
- Öksüz KE. Macro-porous aluminum oxide-boron carbide ceramics for hard tissue applications. Recep Tayyip Erdoğan Üniv Fen Mühendis Bilim Derg. 2023; 4 (2): 65–75.
- Boccaccio A, Fiorentino M, Uva AE, Laghetti LN, Monno G. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology-driven algorithm. Mater Sci Eng C Mater Biol Appl. 2018; 83: 51–66. DOI: 10.1016/j.msec.2017.09.004.
- Chuprunov KO. Razrabotka metoda polucheniya nanostrukturnyh sfericheskih poroshkovyh materialov na osnove gidroksilapatita s reguliruemymi fazovym sostavom i pokazatelyami dispersnosti [dissertaciya]. M., 2022. Russian.
- Nekisheva AA, Abdulazizov BD, Peshekhodko DI. Obzor materialov dlya izgotovleniya endoprotezov tazobedrennogo sustava. Medicina. Sociologiya. Filosofiya. Prikladnye issledovaniya. 2020; 6: 48–54. Russian.
- Marques A, Miranda G, Silva F, Pinto P, Carvalho Ö. Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. J Biomed Mater Res B Appl Biomater. 2021; 109 (3): 377–93. DOI: 10.1002/jbm.b.34706.
- Cai S, Wu C, Yang W, Liang W, Yu H, Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev. 2020; 9 (1): 971–89. DOI: 10.1515/ntrev-2020-0076.
- Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001; 22 (1): 87–96. DOI: 10.1016/S0142-9612(00)00174-5.