Copyright: © 2025 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Cytocompatibility of pressureless sintered porous B4C-ceramics assessed in vitro

About authors

Institute of Experimental Biology and Medicine, Meshalkin National Medical Research Center, Novosibirsk, Russia

Correspondence should be addressed: Elena V. Chepeleva
Rechkunovskaya, 15, Novosibirsk, 630055, Russia; ur.niklahsem@avelepehc_e, ur.liam@azerama

About paper

Funding: the study was supported by the Russian Science Foundation grant (project No. 25-25-00187).

Author contribution: Chepeleva EV, Khakhalkin VV — study concept and design; Chepeleva EV, Kozyr KV, Vaver AA, Khakhalkin VV — experimental procedure and data processing; Chepeleva EV — manuscript writing; Kozyr KV, Vaver AA, Khakhalkin VV — manuscript editing.

Received: 2025-09-10 Accepted: 2025-09-28 Published online: 2025-10-12
|
  1. Hoveidaei AH, Ghaseminejad-Raeini A, Esmaeili S, Sharafi A, Ghaderi A, Pirahesh K, et al. Effectiveness of synthetic versus autologous bone grafts in foot and ankle surgery: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2024; 25 (1): 539.
  2. Vaiani L, Boccaccio A, Uva AE, Palumbo G, Piccininni A, Guglielmi P, et al. Ceramic materials for biomedical applications: an overview on properties and fabrication processes. J Funct Biomater. 2023; 14 (3): 146.
  3. Bilyalov AR, Minasov BSH, Yakupov RR, Akbashev VN, Rafikova GA, Bikmeev AT, i dr. Ispol'zovanie keramicheskoj 3D-pechati dlya zadach tkanevoj inzhenerii: obzor. Politravma. 2023; (1): 89–109. DOI: 10.24412/1819-1495-2023-1-89-109. Russian.
  4. Vlasova TI, Arsenteva EV, Hudajberenova GD, Polyakova DI. Sovremennyj vzglyad na ispol'zovanie kostnyh zamenitelej i vozmozhnost' usileniya ih osteogennosti kletochnymi tekhnologiyami. Medicinskij vestnik Bashkortostana. 2020; 15 (2): 53–58. Russian.
  5. Arif U, Haider S, Haider A, Khan N, Alghyamah AA, Jamila N, et al. Biocompatible polymers and their potential biomedical applications: a review. Curr Pharm Des. 2019; 25 (34): 3608–19. DOI: 10.2174/1381612825999191011105148.
  6. Muhametov UF, Lyulin SV, Borzunov DYu, Gareev IF, Bejlerli OA, Yang G, i dr. Alloplasticheskie i implantacionnye materialy dlya kostnoj plastiki: obzor literatury. Kreativnaya hirurgiya i onkologiya. 2021; 11 (4): 343–53. DOI: 10.24060/2076-3093-2021-11-4-343-353. Russian.
  7. Popov AA, Kirsanova VA, Sviridova IK, Akhmedova SA, Filyushin MM, Sergeeva NS. Osteo-replacement properties of scleractinium coral aquaculture skeleton (experimental study). Russ J Transplantol Artif Organs. 2019; 21 (3): 121–6. DOI: 10.15825/1995-1191-2019-3-121-126.
  8. Brett E, Flacco J, Blackshear C, Longaker MT, Wan DC. Biomimetics of bone implants: the regenerative road. Biores Open Access. 2017; 6 (1): 1–6. DOI: 10.1089/biores.2016.0044.
  9. Smirnov IV, Smirnova PV, Teterina AYU, Kalita VI, Komlev VS. Formirovanie bioaktivnyh keramicheskih pokrytij na titanovyh implantatah. Geny i kletki. 2022; 17 (3): 215. Russian.
  10. Poprygina TD, Ponomareva NI, Gordeev SK, Samodaj VG. Impregnirovanie uglerodnyh nanostrukturnyh implantatov (UNI) kostnym gidroksiapatitom. Prikladnye informacionnye aspekty mediciny. 2022; 25 (1): 51–7. DOI: 10.18499/2070-9277-2022-25-1-51-57. Russian.
  11. Pankratov AS, Fadeeva IS, Yurasova YuB, Grinin VM, CHerkesov IV, Korshunov VV, i dr. Osteoinduktivnyj potencial chastichno demineralizovannogo kostnogo matriksa i vozmozhnosti ego ispol'zovaniya v klinicheskoj praktike. Vestnik RAMN. 2022; 77 (2): 143–51. Russian.
  12. Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: their promising roles in angiogenesis. Front Bioeng Biotechnol. 2023; 11: 1217874. DOI: 10.3389/fbioe.2023.1217874.
  13. Cichoń E, Guzik M. Bacterial-derived polyhydroxyalkanoate/bioceramic composites in clinical practice: state of the art and future perspectives. ACS Biomater Sci Eng. 2025; 11 (8): 4653–70.
  14. Fan D, Liu Y, Wang Y, Wang Q, Guo H, Cai Y, et al. 3D printing of bone and cartilage with polymer materials. Front Pharmacol. 2022; 13: 1044726.
  15. Marchenko ES, Gordienko II, Kozulin AA, Bajgonakova GA, Borisov SA, Garin AS, i dr. Issledovanie biosovmestimosti poristyh 3D-TiNi implantatov v usloviyah in vivo. Sibirskij zhurnal klinicheskoj i eksperimental'noj mediciny. 2024; 39 (1): 184–93. DOI: 10.29001/2073-8552-2024-39-1-184-193. Russian.
  16. Crovace AM, Lacitignola L, Forleo DM, Staffieri F, Francioso E, Di Meo A, et al. 3D biomimetic porous titanium (Ti6Al4V ELI) scaffolds for large bone critical defect reconstruction: an experimental study in sheep. Animals (Basel). 2020; 10 (8): 1389.
  17. Martynov RS, Pak AYa, Volokitin OG, Nikitin DS, Larionov KB, Povalyaev PV, i dr. Sintez poroshka karbida bora bezvakuumnym elektrodugovym metodom i poluchenie ob"emnoj keramiki metodom iskrovogo plazmennogo spekaniya. Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2023; 25 (3): 65–76. DOI: 10.15593/2224-9877/2023.3.07. Russian.
  18. Hahalkin VV, avtor. Sposob polucheniya legkogo keramicheskogo kompozita. Patent RF № RU2836825C1. 24.03.2025. Russian.
  19. GOST ISO 10993-12-2023. Izdeliya medicinskie. Ocenka biologicheskogo dejstviya medicinskih izdelij. CHast' 12. Otbor i podgotovka obrazcov dlya provedeniya issledovanij: mezhgosudarstvennyj standart: vveden 2024-06-01. Mezhgosudarstvennyj sovet po standartizacii, metrologii i sertifikacii. Moskva: Standartinform, 2023. Russian.
  20. GOST ISO 10993-5-2023. Izdeliya medicinskie. Ocenka biologicheskogo dejstviya medicinskih izdelij. CHast' 5. Issledovaniya na citotoksichnost' metodami in vitro: mezhgosudarstvennyj standart: vveden v dejstvie 01.06.2024. Mezhgosudarstvennyj sovet po standartizacii, metrologii i sertifikacii. Moskva: Standartinform, 2023. Russian.
  21. Singh P, Kaur G, Singh K, Kaur M, Kumar M, Meena R, et al. Nanostructured boron carbide (B4C): A bio-compatible and recyclable photo-catalyst for efficient wastewater treatment. Materialia. 2018; 1: 258–64.
  22. Stodolak-Zych E, Gubernat A, Ścisłowska-Czarnecka A, Chadzińska M, Zych L, Zientara D, et al. The influence of surface chemical composition of particles of boron carbide powders on their biological properties. Appl Surf Sci. 2022; 582: 152380.
  23. Wróblewska A, Szermer-Olearnik B, Szczygieł A, Węgierek-Ciura K, Mierzejewska J, Kozień D, et al. Macrophages as carriers of boron carbide nanoparticles dedicated to boron neutron capture therapy. J Nanobiotechnol. 2024; 22 (1): 183.
  24. Öksüz KE. Macro-porous aluminum oxide-boron carbide ceramics for hard tissue applications. Recep Tayyip Erdoğan Üniv Fen Mühendis Bilim Derg. 2023; 4 (2): 65–75.
  25. Boccaccio A, Fiorentino M, Uva AE, Laghetti LN, Monno G. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology-driven algorithm. Mater Sci Eng C Mater Biol Appl. 2018; 83: 51–66. DOI: 10.1016/j.msec.2017.09.004.
  26. Chuprunov KO. Razrabotka metoda polucheniya nanostrukturnyh sfericheskih poroshkovyh materialov na osnove gidroksilapatita s reguliruemymi fazovym sostavom i pokazatelyami dispersnosti [dissertaciya]. M., 2022. Russian.
  27. Nekisheva AA, Abdulazizov BD, Peshekhodko DI. Obzor materialov dlya izgotovleniya endoprotezov tazobedrennogo sustava. Medicina. Sociologiya. Filosofiya. Prikladnye issledovaniya. 2020; 6: 48–54. Russian.
  28. Marques A, Miranda G, Silva F, Pinto P, Carvalho Ö. Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. J Biomed Mater Res B Appl Biomater. 2021; 109 (3): 377–93. DOI: 10.1002/jbm.b.34706.
  29. Cai S, Wu C, Yang W, Liang W, Yu H, Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev. 2020; 9 (1): 971–89. DOI: 10.1515/ntrev-2020-0076.
  30. Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001; 22 (1): 87–96. DOI: 10.1016/S0142-9612(00)00174-5.