Copyright: © 2025 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Expression of microRNA miR146a in the blood plasma of rats with obesity and knee arthrosis after administration of dexamethasone

Ivanov AS1,2, Tananakina TP1, Kashchenko SA1, Pogorelova IA1
About authors

1 Federal State Budgetary Educational Institution of Higher Education “LSMU named St. Luke”, Russia

2 Non-governmental private institusion Scientific Diagnostic Center "Policlinic on Smolenskaya"

Correspondence should be addressed: Aleksey S. Ivanov
A. Dikogo, 16A, kv. 73, 111396, Moskva, Rossiya: ur.liam@5891golotamvartahsas

About paper

Author contribution: Ivanov AS — study design development, experimental design; Tananakina TP — study design development, participation in the experimental design, and scientific supervision; Kashchenko SA — scientific editing, scientific supervision, and participation in the experimental design; Pogorelova IA — technical proofreading, participation in the experimental design.

Compliance with ethical standards: the study was approved by the Ethics Committee of the St. Luke's Lugansk State Medical University of the Russian Ministry of Health (protocol No 1 dated 23 September 2025). When working with laboratory animals, the conditions of care and experimentation were fully compliant with the standards of Order No. 199n of the Russian Ministry of Health "On Approval of the Rules of Good Laboratory Practice" 1, adhering to the principles of the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes, and strictly adhering to the Directive of the European Parliament and of the Council of the European Union on the Protection of Animals used for Scientific Purposes.

Received: 2025-10-04 Accepted: 2025-10-30 Published online: 2025-11-11
|
  1. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008; 105 (30): 10513–8. DOI: 10.1073/pnas.0804549105.
  2. Shirshova AN, Shamovskaja DA, Bojarskih UA, Apalko SV, Leskov LS, Sokolov AV, et al. Ocenka znachimosti opredelenija kolichestva miR-146a v plazme krovi cheloveka dlja diagnostiki kolorektal'nogo raka. Vestnik Rossijskogo gosudarstvennogo medicinskogo universiteta. 2017; 4: 31–36. Russian.
  3. Gareev IF, Bejlerli OA. Cirkulirujushhie mikroRNK kak biomarkery: kakie perspektivy? Profilakticheskaja medicina. 2018; 21 (6): 142– 50. Russian.
  4. Vasilev SV, Akselrod AS, Zhelankin AV, Shhekochihin DYu, Generozov JeV, Sharova EI, et al. Cirkulirujushhie mikroRNK-21-5r, mikroRNK146a-5r, mikroRNK320a3r u pacientov s fibrilljaciej predserdij v sochetanii s gipertonicheskoj bolezn'ju i ishemicheskoj bolezn'ju serdca. Kardiovaskuljarnaja terapija i profilaktika. 2022; 21 (1): 2814. Russian.
  5. Li Y, Tan W, Ye F, et al. Identification of microRNAs and genes as biomarkers of atrial fibrillation using a bioinformatics approach. J Intern Med Res. 2019; 47 (8): 3580–9. DOI:10.1177/0300060519852235.
  6. Duan X, Wang L, Sun G, Yan W, Yang Y. Understanding the cross-talk between host and virus in poultry from the perspectives of microRNA. Poult Sci. 2020; 99 (4): 1838–46. DOI: 10.1016/j.psj.2019.11.053.
  7. Shang R, Lee S. Senavirathne G, Lai EC. MicroRNAs in action: Biogenesis, function and regulation. Na. Rev Genet. 2023; 24: 816–33. Available from: https://doi.org/10.1038/s41576-023-00611-y.
  8. Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 2024; 25: 211–32. Available from: https://doi.org/10.1038/s41576-023-00662-1.
  9. Djachenko NA, Ulitina AS, Lukina OV, Pchelina SN, Trofimov VI, Mironova ZhA. Jekspressija mikroRNK miR-21 i miR-146a u pacientov muzhskogo pola s perekrestnym fenotipom bronhial'noj astmy i hronicheskoj obstruktivnoj bolezni legkih. Pul'monologija. 2020; 30 (3): 263–69. Russian.
  10. Gareev IF, Bejlerli OA, Pavlov VN i dr. Potencial'naja rol' mikroRNK v patogeneze gemorragicheskoj lihoradki s pochechnym sindromom. Urologija. 2021: 112–19. Russian. Available from: https://dx.doi.org/10.18565/urology.2021.1.112-119.
  11. Zhou Y, Chen L, Du J, Hu X, Xie Y, Wu J, et al. MicroRNA-7 Inhibits Rotavirus Replication by Targeting Viral NSP5 In Vivo and In Vitro. Viruses. 2020; 12 (2). pii: E209. DOI: 10.3390/v12020209.
  12. Chen L, Ming X, Li W, Bi M, Yan B, Wang X, Yang P, Yang B. The microRNA-155 mediates hepatitis B virus replication by reinforcing SOCS1 signalling-induced autophagy. Cell Biochem Funct. 2020. DOI: 10.1002/cbf.3488.
  13. Fioravanti A, Cheleschi S, Cavalier E, Reginster J-Y, Alokail M, Ladang A, et al. Can Circulating MicroRNAs, Cytokines, and Adipokines Help to Differentiate Psoriatic Arthritis from Erosive Osteoarthritis of the Hand? A Case–Control Study. International Journal of Molecular Sciences. 2025; 26 (10): 4621. Available from: https://doi.org/10.3390/ijms26104621.
  14. Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat. Rev. Rheumatol. 2021; 17: 692–705. Available from: https://doi.org/10.1038/s41584-021-00687-y.
  15. Shaikh FS, Siegel RJ, Srivastava A, Fox DA, Ahmed S. Challenges and promise of targeting miRNA in rheumatic diseases: A computational approach to identify miRNA association with cell types, cytokines, and disease mechanisms. Front Immunol. 2023; 14: 1322806. Available from: https://doi.org/10.3389/fimmu.2023.1322806.
  16. Wade SM, McGarry T, Wade SC, Fearon U, Veale DJ. Serum MicroRNA Signature as a diagnostic and therapeutic marker in patients with Psoriatic Arthritis. J Rheumatol. 2020; 47: 1760–7. Available from: https://doi.org/10.3899/jrheum.190602.
  17. Motta F, Pederzani A, Carena MC, Ceribelli A, Wordsworth PB, De Santis M, et al. MicroRNAs in Axial Spondylarthritis: An overview of the recent progresses in the field with a focus on Ankylosing Spondylitis and Psoriatic Arthritis. Curr Rheumatol Rep. 2021; 23: 59. Available from: https://doi.org/10.1007/s11926-021-01027-5.
  18. Bonek K, Kuca Warnawin E, Kornatka A, Plebanczyk M, Burakowski T, Maslinski W, et al. Circulating miRNA Correlates with lipid profile and disease activity in psoriatic arthritis, rheumatoid arthritis, and ankylosing spondylitis patients. Biomedicines. 2022; 10: 893. Available from: https://doi.org/10.3390/biomedicines10040893.
  19. Haschka J, Simon D, Bayat S, Messner Z, Kampylafka E, Fagni F, et al. Identification of circulating microRNA patterns in patients in psoriasis and psoriatic arthritis. Rheumatology. 2023; 62: 3448–58. Available from: https://doi.org/10.1093/rheumatology/kead059.
  20. Baloun J, Pekacova A, Svec X, Kropackova T, Horvathova V, Hulejova H, et al. Circulating miRNAs in hand osteoarthritis. Osteoarthr Cartil. 2023; 31: 228–37. DOI: 10.1016/j.joca.2022.10.021.
  21. Cheleschi S, Tenti S, Bedogni G, Fioravanti A. Circulating Mir-140 and leptin improve the accuracy of the differential diagnosis between psoriatic arthritis and rheumatoid arthritis: A case-control study. Transl Res. 2022; 239: 18–34. DOI: 10.1016/j.trsl.2021.08.001.
  22. Mustafin RN. Identichnost' patogeneza, geneticheskikh i epigeneticheskikh mekhanizmov razvitiya osteoartrita i revmatoidnogo artrita. Kazanskii meditsinskii zhurnal. 2024; 105(5): 797–812. Russian. Available from: https://doi.org/10.17816/KMJ627530.
  23. Law YY, Lee WF, Hsu CJ, Lin YY, Tsai CH, Huang CC, et al. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts. Aging (Albany NY). 2021; 13 (13): 17227–36. DOI: 10.18632/aging.203201.
  24. Madamsetty Vijay Sagar Mohammadinejad, Reza Uzieliene, Ilona Nabavi, et al. Dexamethasone: insights into pharmacological aspects, therapeutic mechanisms, and delivery systems. ACS biomaterials science & engineering. 2022; 8 (5): 1763–90. Available from: https://doi.org/10.1021/acsbiomaterials.2c00026.
  25. Bairasheva VK, Pchelin BYu, Egorova AE, Vasilkova ON, Kornyushin OV. Eksperimental'nye modeli alimentarnogo ozhireniya u krys. Juvenis scientia. 2019; 9–10: 8–13. DOI: 10.32415/jscientia.2019.09-10.02. Russian.
  26. Russo A, Bartolini D, at al. Physical Activity Modulates the Overexpression of the Inflammatory miR-146a-5p in Obese Patients. IUBMB Life. 2018; 70 (10): 1012–22. DOI: 10.1002/iub.1926.
  27. Vorotnikov AV, Stafeev YuS, Menshikov MYu, Shestakova MV, Parfenova EV. Latentnoe vospalenie i narushenie obnovleniya zhirovykh depo kak mekhanizm razvitiya rezistentnosti k insulinu pri ozhirenii. Biokhimiya. 2019; 84 (11): 1649–67. DOI: 10.1134/S0320972519110095. Russian.
  28. Chae BS. Effect of low-dose corticosterone pretreatment on the production of inflammatory mediators in super-low-dose LPS-primed immune cells. Toxicol Res. 2021; 37: 47–57. Available from: https://doi.org/10.1007/s43188-020-00051-4.
  29. Rajen Dey, Biswadev Bishayi. Dexamethasone exhibits its anti-inflammatory effects in S. aureus induced microglial inflammation via modulating TLR-2 and glucocorticoid receptor expression. International Immunopharmacology. 2019; 75: 105806. Available from: https://doi.org/10.1016/j.intimp.2019.105806.
  30. Voloshin NI, Pugach VA, Salukhov VV, Tyunin MA, Ilinskii NS, Levchuk EV, et al. Eksperimental'noe issledovanie effektivnosti deksametazona na modeli lipopolisakharid-indutsirovannogo ostrogo povrezhdeniya legkikh u krys. Byulleten' sibirskoi meditsiny. 2023; 22 (4): 22–30. DOI: 10.20538/1682-0363-2023-4-22-30. Russian.