This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).
OPINION
Earthworms as a source of new approaches in biomedical research
1 Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2 HSE University, Moscow, Russia
3 Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences
4 Pirogov Russian National Research Medical University, Moscow, Russia
Correspondence should be addressed: Maxim A. Dubinnyi
Miklukho-Maklaya, 16/10, Moscow, 117997, Russia; ur.xednay@sakmud
Funding: the work was supported by the Russian Science Foundation grant No. 24-14-00421, https://rscf.ru/project/24-14-00421/.
Acknowledgements: the authors would like to thank Z.M. Osipova from Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry and Yu.A. Ovchinnikov for their valuable critical comments on the manuscript.
Author contribution: Author contribution: Khokhlova AN, Vavilov MV, Chepurnykh TV — literature analysis, manuscript authoring; Rodionova N.S., Petushkov V.N. - literature analysis; Yampolsky IV — financing and project management; Dubinnyi MA— financing and project management, manuscript editing.
- Zhu Z, Deng X, Xie W, Li H, Li Y, Deng Z. Pharmacological effects of bioactive agents in earthworm extract: A comprehensive review. Anim Models Exp Med. 2024; 7: 653–72. Available from: https://doi.org/10.1002/ame2.12465.
- Elmer J, Palmer AF. Biophysical Properties of Lumbricus terrestris Erythrocruorin and Its Potential Use as a Red Blood Cell Substitute. J Funct Biomater. 2012; 3: 49–60. Available from: https://doi.org/10.3390/jfb3010049.
- Zimmerman D, DiIusto M, Dienes J, Abdulmalik O, Elmer JJ. Direct comparison of oligochaete erythrocruorins as potential blood substitutes. Bioeng Transl Med. 2017; 2: 212–21. Available from: https://doi.org/10.1002/btm2.10067.
- Meneely PM, Dahlberg CL, Rose JK. Working with Worms: Caenorhabditis elegans as a Model Organism. Curr Protoc Essent Lab Tech. 2019; 19: e35. Available from: https://doi.org/10.1002/cpet.35.
- Yeh H-W, Ai H-W. Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors. Annu Rev Anal Chem Palo Alto Calif. 2019; 12: 129–50. Available from: https://doi.org/10.1146/annurev-anchem-061318-115027.
- Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PloS One. 2010; 5: e12441. Available from: https://doi.org/10.1371/journal.pone.0012441.
- Navarro MX, Brennan CK, Love AC, Prescher JA. Caged luciferins enable rapid multicomponent bioluminescence imaging. Photochem Photobiol. 2023; 100: 67–74. Available from: https://doi.org/10.1111/php.13814.
- Rodionova NS, Rota E, Tsarkova AS, Petushkov VN. Progress in the Study of Bioluminescent Earthworms. Photochem Photobiol. 2017; 93: 416–28. Available from: https://doi.org/10.1111/php.12709.
- Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev. 2016; 45: 6048–77. Available from: https://doi.org/10.1039/C6CS00296J.
- Petushkov VN, Vavilov MV, Khokhlova AN, Zagitova RI, Belozerova OA, Shcheglov AS, et al. Henlea earthworm bioluminescence comprises violet-blue BRET from tryptophan 2-carboxylate to deazaflavin cofactor. Biochem Biophys Res Commun. 2024; 708: 149787. Available from: https://doi.org/10.1016/j.bbrc.2024.149787.
- Dubinnyi MA, Ivanov IA, Rodionova NS, Kovalchuk SI, Kaskova ZM, Petushkov VN. α-C-Mannosyltryptophan is a Structural Analog of the Luciferin from Bioluminescent Siberian Earthworm Henlea sp. Chemistry Select. 2020; 5: 13155–9. Available from: https://doi.org/10.1002/slct.202003075.
- Minakata S, Inai Y, Manabe S, Nishitsuji K, Ito Y, Ihara Y. Monomeric C-mannosyl tryptophan is a degradation product of autophagy in cultured cells. Glycoconj J. 2020; 37: 635–45. Available from: https://doi.org/10.1007/s10719-020-09938-8.
- Blum NT, Zhang Y, Qu J, Lin J, Huang P. Recent Advances in SelfExciting Photodynamic Therapy. Front Bioeng Biotechnol. 2020; 8: 594491. Available from: https://doi.org/10.3389/fbioe.2020.594491.
- Belleti E, Bevilaqua VR, Brito AMM, Modesto DA, Lanfredi AJC, Viviani VR, et al. Synthesis of bioluminescent gold nanoparticleluciferase hybrid systems for technological applications. Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol. 2021; 20: 1439–53. Available from: https://doi.org/10.1007/s43630-021-00111-0.
- Kim Y-P, Daniel WL, Xia Z, Xie H, Mirkin CA, Rao J. Bioluminescent nanosensors for protease detection based upon gold nanoparticleluciferase conjugates. Chem Commun Camb Engl. 2010; 46: 76–8. Available from: https://doi.org/10.1039/b915612g.
- Dunuweera AN, Dunuweera SP, Ranganathan K. A Comprehensive Exploration of Bioluminescence Systems, Mechanisms, and Advanced Assays for Versatile Applications. Biochem Res Int. 2024; 2024: 8273237. Available from: https://doi.org/10.1155/2024/8273237.