This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).
ORIGINAL RESEARCH
Blood expression of CD39 and CD73 ectonucleotidases in patients with various forms of metabolic-associated fatty liver disease
1 Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
2 Petrozavodsk State University, Petrozavodsk, Russia
Correspondence should be addressed: Galina A. Zhulai
Pushkinskaya, 11, Petrozavodsk, Russia; ur.xednay@111-ilaghz
Funding: the work was supported by grant No. 25-25-00534 of the Russian Science Foundation and used equipment of the Collective Use Centre of Karelian Research Centre of the Russian Academy of Sciences.
Author contribution: Zhulai GA, Kurbatova IV — study planning, collection, processing and analysis of material, statistical processing, article authoring; Dudanova OP — formation of clinical groups, analysis of clinical data, article editing.
Compliance with ethical standards: the study was approved by the Ethics Committee of the Ministry of Health of the Republic of Karelia and Petrozavodsk State University (Minutes No. 48 of March 10, 2023). All participants signed the voluntary informed consent form and the consent form for personal data processing.
- Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023; 77 (4): 1335–47. DOI: 10.1097/HEP.0000000000000004.
- Maev IV, Andreev DN, Kucheryavyj YuA. Rasprostranennost' nealkogol'noj zhirovoj bolezni pecheni v Rossii: meta-analiz. Consilium Medicum. 2023; 25 (5): 313–9. DOI: 10.26442/20751753.2023.5.202155. Russian.
- Ivashkin VT, Drapkina OM, Maevskaya MV, Rajhelson KL, Okovityj SV, Zharkova MS, i dr. Klinicheskie rekomendacii Rossijskogo obshchestva po izucheniyu pecheni, Rossijskoj gastroenterologicheskoj associacii, Rossijskogo obshchestva profilaktiki neinfekcionnyh zabolevanij, Rossijskoj associacii endokrinologov, Rossijskogo nauchnogo medicinskogo obshchestva terapevtov, Nacional'nogo obshchestva profilakticheskoj kardiologii, Rossijskoj associacii gerontologov i geriatrov po nealkogol'noj zhirovoj bolezni pecheni. Rossijskij zhurnal gastroenterologii, gepatologii, koloproktologii. 2025; 35 (1): 94–152. DOI: 10.22416/1382-4376-2025-35-1-94-152. Russian.
- Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021; 184 (10): 2537–64. DOI: 10.1016/j.cell.2021.04.015.
- Di Mauro S, Scamporrino A, Filippello A, Di Pino A, Scicali R, Malaguarnera R, et al. Clinical and molecular biomarkers for diagnosis and staging of NAFLD. Int J Mol Sci. 2021; 22 (21): 11905. DOI: 10.3390/ijms222111905.
- Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwälder M, Tacke F. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease — novel insights into cellular communication circuits. J Hepatol. 2022; 77 (4): 1136–60. DOI: 10.1016/j.jhep.2022.06.012.
- Kurbatova IV, Topchieva LV, Dudanova OP, Shipovskaya AA. The role of the soluble interleukin-6 receptor in the progression of nonalcoholic fatty liver disease. Bull Exp Biol Med. 2023; 174 (5): 628–33. DOI: 10.1007/s10517-023-05759-5.
- Topchieva LV, Kurbatova IV, Dudanova OP, Vasileva AV, Zhulai GA. Immune cell balance as potential biomarker of progressing non-alcoholic fatty liver disease. Genes & Cells. 2024; 19 (1): 105–25. DOI: 10.17816/gc610252.
- Shipovskaya AA, Dudanova OP, Kurbatova IV. Inflammatory cytokines, soluble interleukin-6 receptors, and fragmented cytokeratin-18 as indicators of non-alcoholic steatohepatitis. Ter Arkh. 2025; 97 (2): 115–20. DOI: 10.26442/00403660.2025.02.203123.
- Eguchi A, Iwasa M, Yamada M, Tamai Y, Shigefuku R, Hasegawa H, et al. A new detection system for serum fragmented cytokeratin 18 as biomarker reflecting histological activities of human nonalcoholic steatohepatitis. Hepatol Commun. 2022; 6 (8): 1987–99. DOI: 10.1002/hep4.1971.
- Pasquini S, Contri C, Borea PA, Vincenzi F, Varani K. Adenosine and Inflammation: Here, There and Everywhere. Int J Mol Sci. 2021; 22: 7685. DOI: 10.3390/ijms22147685.
- Jain S, Jacobson KA. Purinergic signaling in liver pathophysiology. Front Endocrinol (Lausanne). 2021; 12: 718429. DOI: 10.3389/fendo.2021.718429.
- Snider NT, Griggs NW, Singla A, Moons DS, Weerasinghe SV, Lok AS, et al. CD73 (ecto-5'-nucleotidase) hepatocyte levels differ across mouse strains and contribute to mallory-denk body formation. Hepatology. 2013; 58 (5): 1790–800. DOI: 10.1002/hep.26525.
- Wang S, Gao S, Zhou D, Qian X, Luan J, Lv X. The role of the CD39-CD73-adenosine pathway in liver disease. J Cell Physiol. 2021; 236 (2): 851–62. DOI: 10.1002/jcp.29932.
- Sun X, Imai M, Nowak-Machen M, Guckelberger O, Enjyoji K, Wu Y, et al. Liver damage and systemic inflammatory responses are exacerbated by the genetic deletion of CD39 in total hepatic ischemia. Purinergic Signal. 2011; 7 (4): 427–34. DOI: 10.1007/s11302-011-9239-6.
- Peng ZW, Rothweiler S, Wei G, Ikenaga N, Liu SB, Sverdlov DY, et al. The ectonucleotidase ENTPD1/CD39 limits biliary injury and fibrosis in mouse models of sclerosing cholangitis. Hepatol Commun. 2017; 1 (9): 957–72. DOI: 10.1002/hep4.1084.
- Cai Y, Li H, Liu M, Qian X, Luan J, Lv, X. Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity. Hepatology. 2018; 68 (1): 48– 61. DOI:10.1002/jcp.29932.
- Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999; 94 (9): 2467–74. DOI: 10.1111/j.1572-0241.1999.01377.x.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2–∆∆CT method. Methods. 2001. 25 (4): 402–8. DOI: 10.1006/meth.2001.1262.
- Timperi E, Barnaba V. CD39 Regulation and Functions in T Cells. International Journal of Molecular Sciences. 2021; 22 (15): 8068. DOI: 10.3390/ijms22158068.
- Pulte ED, Broekman MJ, Olson KE, Drosopoulos JH, Kizer JR, Islam N, et al. CD39/NTPDase-1 activity and expression in normal leukocytes. Thrombosis research. 2007; 121 (3): 309–17. DOI: 10.1016/j.thromres.2007.04.008.
- Vuerich M, Robson SC, Longhi MS. Ectonucleotidases in intestinal and hepatic inflammation. Front Immunol. 2019; 10: 507. DOI: 10.3389/fimmu.2019.00507.
- Li H, Ding P, Nan Y, Wu Z, Hua N, Luo L, et al. Low expression of CD39 on monocytes predicts poor survival in sepsis patients. J intensive care. 2025; 13: 12. DOI: 10.1186/s40560-025-00784-0.
- Duarte MM, Loro VL, Rocha JB, Leal DB, Bem AF, Dorneles A, et al. Enzymes that hydrolyze adenine nucleotides of patients with hypercholesterolemia and inflammatory processes. FEBS J. 2007; 274 (11): 2707–14. DOI: 10.1111/j.1742-4658.2007.05805.x.
- Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, et al. Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase CD39. J Biol Chem. 2005; 280 (28): 26406–14. DOI: 10.1074/jbc.M41392720014.