Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).
ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ
Однонуклеотидный вариант rs293795 OGG1 как генетический фактор риска диабетической нефропатии
Курский государственный медицинский университет, Курск, Россия
Для корреспонденции: Юлия Эдуардовна Азарова
ул. Ямская, д. 18, г. Курск, 305041, Россия; ur.xednay@razzzza
Финансирование: исследование выполнено за счет гранта Российского научного фонда (проект № 25-25-20072) и Министерства образования и науки Курской области (соглашение №241 от 19.05.2025 г.).
Вклад авторов: Е. В. Семикина — генотипирование образцов ДНК, анализ полученных данных, написание текста; Ю. Э. Азарова — концепция и дизайн исследования, привлечение финансирования, сбор и обработка материалов, написание текста; С. А. Паничев — генотипирование образцов ДНК, внесение результатов генотипирования в базу данных; О. И. Басарева — отбор функционально значимых полиморфных вариантов гена OGG1, подбор праймеров и зондов для генотипирования SNP; Н. В. Джанчатова — генотипирование образцов ДНК; Е. Ю. Алферова — пробоподготовка: экстракция ДНК из крови, измерение концентрации и чистоты образцов ДНК; А. В. Полоников — анализ полученных данных, обзор литературы, редактирование.
Соблюдение этических стандартов: исследования одобрено этическим комитетом Курского государственного медицинского университета (протокол № 1 от 20 января 2025 г.).
- Reed J, Bain S, Kanamarlapudi V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab Syndr Obes. 2021; 14: 3567–602. PMID: 34413662. DOI: 10.2147/DMSO.S319895.
- Duncan BB, Magliano DJ, Boyko EJ. IDF diabetes atlas 11th edition 2025: global prevalence and projections for 2050. Nephrol Dial Transplant. 2025. DOI: 10.1093/ndt/gfaf177.
- Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 2016; 4 (6): 537–47. PMID: 27156051. DOI: 10.1016/S2213-8587(16)30010-9.
- Selby NM, Taal MW. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020; Suppl 1: 3–15. PMID: 32267079. DOI: 10.1111/dom.14007.
- Kopel J, Pena-Hernandez C, Nugent K. Evolving spectrum of diabetic nephropathy. World J Diabetes. 2019; 10: 269–79. DOI: 10.4239/wjd.v10.i5.269.
- Samsu N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Res Int. 2021; 2021: 16740. DOI: 10.1155/2021/1497449.
- Azarova I, Klyosova E, Polonikov A. Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes. Biomedicines. 2023; 11 (3): 981. PMID: 36979960. DOI: 10.3390/biomedicines11030981.
- Gallagher H, Suckling RJ. Diabetic nephropathy: where are we on the journey from pathophysiology to treatment? Diabetes Obes Metab. 2016; 18 (7): 641–7. PMID: 26743887. DOI: 10.1111/dom.12630.
- Grindel A, Guggenberger B, Eichberger L, Pöppelmeyer C, Gschaider M, Tosevska A et al. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2. PLoS One. 2016; 11 (9): e0162082. PMID: 27598300. DOI: 10.1371/journal.pone.0162082.
- Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019; 177: 37–45. PMID: 29604323. DOI: 10.1016/j.mad.2018.03.013.
- González-Quiroz M, Blondel A, Sagredo A, Hetz C, Chevet E, Pedeux R. When Endoplasmic Reticulum Proteostasis Meets the DNA Damage Response. Trends Cell Biol. 2020; 30 (11): 881–91. PMID: 33036871. DOI: 10.1016/j.tcb.2020.09.002.
- Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The Role of Oxidative Stress in Pancreatic — Cell Dysfunction in Diabetes. Int J Mol Sci. 2021; 22 (4): 1509. PMID: 33546200. DOI: 10.3390/ijms22041509.
- Uphoff S, Lord ND, Okumus B, Potvin-Trottier L, Sherratt DJ, Paulsson J. Stochastic activation of a DNA damage response causes cell-to-cell mutation rate variation. Science. 2016; 351 (6277): 1094–7. DOI: 10.1126/science.aac9786.
- Gu S, Li J, Li S, Cao J, Bu J, Ren Y, et al. Efficient replacement of long DNA fragments via non-homologous end joining at non-coding regions. J Mol Cell Biol. 2021; 13 (1): 75–77. DOI: 10.1093/jmcb/mjaa051.
- Demin AA, Hirota K, Tsuda M, Adamowicz M, Hailstone R, Brazina J, et al. XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Mol Cell. 2021; 81 (14): 3018–30.e5. DOI: 10.1016/j.molcel.2021.05.009.
- Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman LC, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett. 2008; 266 (1): 60–72. DOI: 10.1016/j.canlet.2008.02.032.
- Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics. 2022; 220 (2): iyab178. PMID: 35137093. DOI: 10.1093/genetics/iyab178.
- David SS, O'Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature. 2007; 447 (7147): 941–50. PMID: 17581577. DOI: 10.1038/nature05978.
- Ba X, Boldogh I. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Redox Biol. 2018; 14: 669–78. PMID: 29175754. DOI: 10.1016/j.redox.2017.11.008.
- Fleming AM, Ding Y, Burrows CJ. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc Natl Acad Sci USA. 2017; 114 (10): 2604–9. DOI: 10.1073/pnas.1619809114.
- Boiteux S, Coste F, Castaing B. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med. 2017; 107: 179–201. DOI: 10.1016/j.freeradbiomed.2016.11.042.
- Kumar V, Agrawal R, Pandey A, Kopf S, Hoeffgen M, Kaymak S, et al. Compromised DNA repair is responsible for diabetes-associated fibrosis. EMBO J. 2020; 39 (11): e103477. PMID: 32338774. DOI: 10.15252/embj.2019103477.
- Thameem F, Puppala S, Lehman DM, Stern MP, Blangero J, Abboud HE, et al. The Ser(326)Cys polymorphism of 8-oxoguanine glycosylase 1 (OGG1) is associated with type 2 diabetes in Mexican Americans. Hum Hered. 2010; 70 (2): 97–101. PMID: 20606456. DOI: 10.1159/000291964.
- Daimon M, Oizumi T, Toriyama S, Karasawa S, Jimbu Y, Wada K, et al. Association of the Ser326Cys polymorphism in the OGG1 gene with type 2 DM. Biochem Biophys Res Commun. 2009; 386 (1): 26–29. PMID: 19486888. DOI: 10.1016/j.bbrc.2009.05.119.
- World Health Organization. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus. Abbreviated Report of a WHO Consultation (WHO/NMH/CHP/CPM/11.1). World Health Organization; 2011.
- Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006; 22 (15): 1928–9. PMID: 16720584. DOI: 10.1093/bioinformatics/btl268.
- Mullins EA, Rodriguez AA, Bradley NP, Eichman BF. Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway. Trends Biochem Sci. 2019; 44 (9): 765–81. PMID: 31078398. DOI: 10.1016/j.tibs.2019.04.006.
- Cai H, Wang W, Li M, Jin J, Ge Z. Expression of nucleic acid oxidation metabolites 8-Oxo-GSn and β-amyloid protein in the urine and cerebral tissues of diabetic rats. Journal of King Saud University — Science. 2022; 34 (3): 101776. DOI.org/10.1016/j.jksus.2021.101776.
- Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia. 2002; 45 (1): 85–96. PMID: 11845227. DOI: 10.1007/s125-002-8248-z.
- Mizukami H, Takahashi K, Inaba W, Tsuboi K, Osonoi S, Yoshida T et al. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care. 2014; 37 (7): 1966–74. PMID: 24705612. DOI: 10.2337/dc13-2018.
- Ovcherenko SS, Shernyukov AV, Nasonov DM, Endutkin AV, Zharkov DO, Bagryanskaya EG. Dynamics of 8-Oxoguanine in DNA: Decisive Effects of Base Pairing and Nucleotide Context. J Am Chem Soc. 2023; 145 (10): 5613–7. PMID: 36867834. DOI: 10.1021/jacs.2c11230.
- Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed). 2017; 22 (9): 1493–522. PMID: 28199214. DOI: 10.2741/4555.
- Shikazono N, Akamatsu K. Mutagenic potential of 8-oxo-7,8- dihydroguanine (8-oxoG) is influenced by nearby clustered lesions. Mutat Res. 2018; 810: 6–12. PMID: 29870902. DOI: 10.1016/j.mrfmmm.2018.05.001.
- Simone S, Gorin Y, Velagapudi C, Abboud HE, Habib SL. Mechanism of oxidative DNA damage in diabetes: tuberin inactivation and downregulation of DNA repair enzyme 8-oxo-7,8- dihydro-2'-deoxyguanosine-DNA glycosylase. Diabetes. 2008; 57 (10): 2626–36. PMID: 18599524. DOI: 10.2337/db07-1579.
- Manoel-Caetano FS, Xavier DJ, Evangelista AF, Takahashi P, Collares CV, Puthier D, et al. Gene expression profiles displayed by peripheral blood mononuclear cells from patients with type 2 diabetes mellitus focusing on biological processes implicated on the pathogenesis of the disease. Gene. 2012; 511 (2): 151–60. PMID: 23036710. DOI: 10.1016/j.gene.2012.09.090.
- Merecz A, Markiewicz L, Sliwinska A, Kosmalski M, Kasznicki J, Drzewoski J, et al. Analysis of oxidative DNA damage and its repair in Polish patients with diabetes mellitus type 2: Role in pathogenesis of diabetic neuropathy. Adv Med Sci. 2015; 60 (2): 220–30. PMID: 25932787. DOI: 10.1016/j.advms.2015.04.001.
- Hassan FM. OGG1 rs1052133 Polymorphism and Genetic Susceptibility to Chronic Myelogenous Leukaemia. Asian Pac J Cancer Prev. 2019; 20 (3): 925–8. DOI: 10.31557/APJCP.2019.20.3.925.
- Alanazi M, Pathan AAK, Shaik JP, Alhadheq A, Khan Z, Khan W, et al. The hOGG1 Ser326Cys gene polymorphism and breast cancer risk in Saudi population. Pathology and Oncology Research. 2017; 23 (3): 525–35.
- Kim KY, Han W, Noh DY, Kang D, Kwack K. Impact of genetic polymorphisms in base excision repair genes on the risk of breast cancer in a Korean population. Gene. 2013; 532 (2): 192–6. PMID: 24076439. DOI: 10.1016/j.gene.2013.09.069.
- Osorio A, Milne RL, Kuchenbaecker K, Vaclova T, Pita G, Alonso R, et al. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. PLoS Genet. 2014; 10: e1004256. DOI: 10.1371/journal.pgen.1004256.
- Sampath H, Vartanian V, Rollins MR, Sakumi K, Nakabeppu Y, Lloyd RS. 8-Oxoguanine DNA glycosylase (OGG1) deficiency increases susceptibility to obesity and metabolic dysfunction. PLoS One. 2012; 7 (12): e51697. PMID: 23284747. DOI: 10.1371/journal.pone.0051697.
- Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G, Lyttleton O, et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biology. 2016; 17: 61. DOI: 10.1186/s13059-016-0926-z.
- Sun Z, Zhang Y, Jia J, Fang Y, Tang Y, Wu H, et al. H3K36me3, message from chromatin to DNA damage repair. Cell Biosci. 2020; 10: 9. PMID: 32021684. DOI: 10.1186/s13578-020-0374-z.
- Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, et al. Deciphering the splicing code. Nature. 2010; 465 (7294): 53–59. PMID: 20445623. DOI: 10.1038/nature09000.
- Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science. 2010; 327 (5968): 996–1000. PMID: 20133523. DOI: 10.1126/science.1184208.