Testing the surrounding environment for the presence of biogenic aerosols is crucial in ensuring its safety for the population. It is often necessary to collect aerosol samples from large areas in short time, which demands excellent particle collection efficiency, a sufficient incoming air flow rate and a capacity to maintain the viability of the collected samples. Below we present the aerosol sampler with a high volumetric flow rate based on a two-stage particle concentration algorithm and consisting of a virtual impactor and a cyclone concentrator with a recirculating liquid phase. We provide all necessary calculations and an algorithm for modeling impactor parameters. The sampler was tested using dry and liquid formulations dispersed into the particles of 0.5 to 5 μm in diameter. We demonstrate that at volumetric flow rates over 4,000 l/min efficiency of particle collection into the liquid phase at a volume of 10 ml makes over 20% of the total aerosol mass and at volumetric flow rates over 300 l/min this value is over 60%. The proposed device maintains viability of the collected microorganisms. The sampler is portable, with flexible settings for sampling and cleaning, and can be controlled remotely over the network.
VIEWS 4419
The need for novel techniques of rapid identification of pathogenic microorganisms arises from the massive spread of drug-resistant nosocomial strains and the emergence of centers for biohazard control. Fourier-transform infrared spectroscopy is a promising alternative to mass spectrometry as it is cost-effective, fast and suitable for field use. The aim of this work was to propose an algorithm for the identification of microorganisms in pure cultures based on the analysis of their Fourier transform infrared spectra. The algorithm is based on the automated principal component analysis of infrared spectra. Unlike its analogues described in the literature, the algorithm is capable of identifying bacteria regardless of the culture medium or growth phase. The training sample included the most prevalent causative agents of infections and sepsis in humans: Staphylococcus aureus (n = 67), Enterococcus faecalis (n = 10), Enterococcus faecium (n = 10), Klebsiella pneumoniae (n = 10), Escherichia coli (n = 10), Serratia marcescens (n = 10), Enterobacter cloacae (n = 10), Acinetobacter baumannii (n = 10), Pseudomonas aeruginosa (n = 10), and Candida albicans (n = 10). The model we built successfully passed a series of blind tests involving clinical isolates of 10 methicillin-resistant (MRSA) and 10 methicillin-sensitive (MSSA) Staphylococcus aureus strains as well as pair mixes of these cultures with clinical isolates of Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae.
VIEWS 4330
Reactive oxygen species (ROS) are vital metabolites in numerous biological functions. Disorders of cellular mechanisms can cause overproduction of ROS and, subsequently, oxidative damage to DNA, proteins, cells and tissues, which is associated with the pathogenesis of a number of neurodegenerative and inflammatory diseases. Development of highly sensitive, relatively simple and fast-to-implement innovative methods to detect oxidative stress requires understanding of how such disorders relate to the level of ROS. This research aimed to apply the biological fluids' ROS detection method we have developed (using the stable platinum nanoelectrode that allows assessing the level of hydrogen peroxide (H2O2) down to 1 μM) and determine the level of H2O2 in lacrimal and intraocular fluids of rabbits, as well as to investigate how the level of H2O2 changes under the influence of antioxidant therapy. The effect superoxide dismutase (SOD) nanoparticles produce on biological fluids' ROS level was shown. The level of H2O2 in lacrimal fluid increased 10 and 30 min after instillation of SOD nanoparticles. As for the intraocular fluid, H2O2 concentration starts to grow only 30 min after instillation of SOD nanoparticles, which suggests that the they penetrate the internal structures of the eye gradually. The method seems to be of value in the context of eye diseases diagnosing and treatment.
VIEWS 4156
Due to the spreading and increasing drug resistance of pathogens, the search for novel antibiotics is becoming ever more important. Plant-derived polyphenols are a vast and promising class of compounds with a potential to fight infectious diseases. Still, they are not routinely used in clinical practice. No reports on the in vivo studies of these compounds have been presented. The aim of our work was to compare the antimicrobial activity of resveratrol (stilbene), dihydroquercetin and dihydromyricetin (flavonols) extracted from the bark and wood of conifers against the dermatophytes Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Using the radial diffusion assay, we established that dihydroquercetin, resveratrol and dihydromyricetin exhibit high activity against S. aureus even at the smallest possible concentrations of 0.22, 0.15, and 0.15 mM, respectively. In contrast, the highest achievable concentrations of these compounds in the solutions (21.5, 15.5 and 15.0 mM for dihydroquercetin, resveratrol and dihydromyricetin, respectively) have no effect on the growth of P. aeruginosa and C. albicans. These findings suggest that polyphenols derived from conifers could have a potential to be used as a medicine for topical application to treat bacterial infections of the skin caused by S. aureus.
VIEWS 4036