ORIGINAL RESEARCH

Studying the ability to control human phantom fingers in P300 brain-computer interface

Kaplan AYa1,2, Zhigulskaya DD1, Kiriyanov DA1
About authors

1 Laboratory for Neurophysiology and Nero-Computer Interfaces, Faculty of Biology,
Lomonosov Moscow State University, Moscow, Russia

2 Laboratory for Brain-Machine Interfaces and Applied Neuroengineering,
Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, Russia

Correspondence should be addressed: Alexandr Kaplan
Leninskie gory, d. 1, str. 12, Moscow, Russia, 117234; ur.liam@nalpaka

About paper

Funding: this work was partially supported by the Skolkovo Foundation, grant no. 1110034, and the Russian Science Foundation, grant no. 15-19-20053.

Received: 2016-04-11 Accepted: 2016-04-15 Published online: 2017-01-05
|
  1. Kaplan AYa. Nerofiziologicheskie osnovaniya i prakticheskie realizatsii tehnologii mozg-mashinnykh interfeisov v nevrologicheskoi reabilitatsii. Hum Physiol. 2016; 42 (1): 118–27. Russian.
  2. Mokienko OA, Chernikova LA, Frolov AA, Bobrov PD. [Motor imagery and its practical application]. Zh Vyssh Nerv Deiat Im I P Pavlova. 2013 Mar–Apr; 63 (2): 195–204. Russian.
  3. Park J, Lee N, Cho M, Kim D, Yang Y. Effects of mental practice on stroke patients' upper extremity function and daily activity performance. J Phys Ther Sci. 2015 Apr; 27 (4): 1075–7.
  4. Kho AY, Liu KP, Chung RC. Meta-analysis on the effect of mental imagery on motor recovery of the hemiplegic upper extremity function. Aust Occup Ther J. 2014 Apr; 61 (2): 38–48.
  5. Bernshtein NA. Fiziologiya dvizhenii i aktivnost'. Gazenko OG, editor. Moscow: Nauka; 1990. 494 p. Russian.
  6. Skvortsova VI,. Krylov VV. Gemorragicheskii insul't: Prakticheskoe rukovodstvo. Moscow: GEOTAR-Media; 2005. 160 p. Russian.
  7. Hara Y. Brain plasticity and rehabilitation in stroke patients. J Nippon Med Sch. 2015; 82 (1): 4–13.
  8. Mokienko OA, Chervyakov AV, Kulikova SN, Bobrov PD, Chernikova LA, Frolov AA, et al. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects. Front Comput Neurosci. 2013 Nov 22; 7: 168.
  9. Yuan H, He B. Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans Biomed Eng. 2014 May; 61 (5): 1425–35.
  10. Vasil'ev AN, Liburkina SP, Kaplan AYa. Lateralizatsiya patternov EEG u cheloveka pri predstavlenii dvizhenii rukami v interfeise mozg–komp'yuter. Zh Vyssh Nerv Deiat Im I P Pavlova. 2016; 66 (3): 1–11. Russian.
  11. Machado S, Lattari E, de Sá AS, Rocha NB, Yuan TF, Paes F, et al. Is mental practice an effective adjunct therapeutic strategy for upper limb motor restoration after stroke? A systematic review and meta-analysis. CNS Neurol Disord Drug Targets. 2015; 14 (5): 567–75.
  12. Frolov AA, Biryukova EV, Bobrov PD, Mokienko OA, Platonov AK, Pryanichnikov VE, et al. Printsipy neiroreabilitatsii, osnovannye na ispol'zovanii interfeisa “mozg-komp'yuter” i biologicheski adekvatnogo upravleniya ekzoskeletonom. Hum Physiol. 2013; 39 (2): 99–105. Russian.
  13. Powers JC, Bieliaieva K, Wu S, Nam CS. The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces. Brain Sci. 2015 Aug 10; 5 (3): 318–56.
  14. Bamdad M, Zarshenas H, Auais MA. Application of BCI systems in neurorehabilitation: a scoping review. Disabil Rehabil Assist Technol. 2015; 10 (5): 355–64.
  15. Kaplan AY, Shishkin SL, Ganin IP, Basyul IA, Zhigalov AY. Adapting the P300-based brain-computer interface for gaming: a review. IEEE Trans Comput Intell AI Games (Special Issue on Brain/Neuronal-Computer Games Interfaces and Interaction). 2013; 5 (2): 141–149.
  16. Cipresso P, Carelli L, Solca F, Meazzi D, Meriggi P, Poletti B, et al. The use of P300-based BCIs in amyotrophic lateral sclerosis: from augmentative and alternative communication to cognitive assessment. Brain Behav. 2012 Jul; 2 (4): 479–98.
  17. Botvinick M, Cohen J. Rubber hands 'feel' touch that eyes see. Nature. 1998 Feb 19; 391 (6669): 756.
  18. Kammers MP, de Vignemont F, Verhagen L, Dijkerman HC. The rubber hand illusion in action. Neuropsychologia. 2009 Jan; 47 (1): 204–11.
  19. Kalckert A, Ehrsson HH. The moving rubber hand illusion revisited: comparing movements and visuotactile stimulation to induce illusory ownership. Conscious Cogn. 2014 May; 26: 117–32.
  20. Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci. 2001 Sep; 2 (9): 661–70.
  21. Gatti R, Tettamanti A, Gough PM, Riboldi E, Marinoni L, Buccino G. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study. Neurosci Lett. 2013 Apr 12; 540: 37–42.