METHOD
Multiparametric detection of bacterial contamination based on the photonic crystal surface mode detection
1 Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow
2 Laboratory of Spectroscopy of Condensed Matter, Institute for Spectroscopy, Russian Academy of Sciences, Troitsk
Correspondence should be addressed: Igor R. Nabiev
Kashirskoe shosse 31, Moscow, 115529; moc.liamg@veiban.rogi
Funding: this work was part of the Federal Targeted Program The National system of Chemical and Biological Security of the Russian Federation (2015-2020) supported by the Ministry of Healthcare of the Russian Federation (State grant No. K-27-НИР/144-5 dated December 24, 2015).
Acknowledgement: the authors wish to thank Tkachuk AP, Head of the Department of Translational Biomedicine (Gamaleya Research Institute of Epidemiology and Microbiology) for rabbit antibodies against the heat-labile toxin LT.
- Wilson MS. Electrochemical Immunosensors for the Simultaneous Detection of Two Tumor Markers. Anal Chem. 2005; 77 (5): 1496– 1502.
- Xu T, Jia X, Chen X, Ma Z. Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocolloidal gold. Biosens Bioelectron. 2014; (56): 174–9.
- Zong C, Wu J, Wang C, Ju H, Yan F. Chemiluminescence Imaging Immunoassay of Multiple Tumor Markers for Cancer Screening. Anal Chem. 2012; 84 (5): 2410–15.
- Zhao Y, Zhao X, Pei X, et al. Multiplex detection of tumor markers with photonic suspension array. Anal Chim Acta. 2009; 633 (1): 103–8.
- Ravalli A, Gomes C, Yamanaka H, Marrazza G. A label-free electrochemical affisensor for cancer marker detection : The case of HER2. Bioelectrochemistry. 2015; 106 (Pt B): 268–75.
- Gomes RS, Moreira FTC, Fernandes R, Sales MGF. Sensing CA 15-3 in point-of-care by electropolymerizing O-phenylenediamine ( oPDA ) on Au-screen printed electrodes. PLoS One. 2018; 13(5): [about 1 p.]. Available from: http://journals.plos.org/plosone/ article?id=10.1371/journal.pone.0196656
- Nguyen HH, Park J, Kang S, Kim M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors (Switzerland). 2015; 15 (5): 10481–510.
- Michelotti F, Sciacca B, Dominici L, Quaglio M. Fast optical vapour sensing by Bloch surface waves on porous silicon membranes. Phys Chem Chem Phys. 2010; (12): 502–6.
- Khan MU, Corbett B. Bloch surface wave structures for high sensitivity detection and compact waveguiding. Sci Technol Adv Mater. 2016; 17 (1): 398–409
- Konopsky V, Karakouz T, Alieva E, Vicario C, Sekatskii S, Dietler G. Photonic Crystal Biosensor Based on Optical Surface Waves. Sensors. 2013; 13 (3): 2566–78.
- Bilan RS, Krivenkov VA, Berestovoy MA, et al. Engineering of Optically Encoded Microbeads with FRET-Free Spatially Separated Quantum-Dot Layers for Multiplexed Assays. Chem Phys Chem. 2017; 18 (8): 970–9.
- Toren P, Ozgur E, Bayindir M. Label-Free Optical Biodetection of Pathogen Virulence Factors in Complex Media Using Microtoroids with Multifunctional Surface Functionality. ACS Sensors. 2018; 3 (2): 352–9.
- Iglewski BH, Liu PV, Kabat D. Mechanism of Action of Pseudomonas aeruginosa Exotoxin A: Adenosine Diphosphate- Ribosylation of Mammalian Elongation Factor 2 In Vitro and In Vivo. 1977; 15 (1): 138–44.
- Khan AA, Cerniglia CE. Detection of Pseudomonas aeruginosa from clinical and environmental samples by amplification of the exotoxin A gene using PCR. Appl Environ Microbiol. 1994; 60 (10): 3739–45.
- Norton EB, Branco LM, Clements JD. Evaluating the A-Subunit of the Heat-Labile Toxin (LT) As an Immunogen and a Protective Antigen Against Enterotoxigenic Escherichia coli (ETEC). PLoS One. 2015; 10 (8): [about 1 p.]. Available from: https://www.ncbi. nlm.nih.gov/pmc/articles/PMC4549283/
- Allen KP, Randolph MM, Fleckenstein JM. Importance of Heat- Labile Enterotoxin in Colonization of the Adult Mouse Small Intestine by Human Enterotoxigenic Escherichia coli Strains. Infect Immun. 2006; 74 (2): 869–75.
- Schasfoort RBM, Tudos AJ, editors. Handbook of Surface Plasmon Resonance. London: RSC Publisher; 2013. 524 с.
- pcbiosensors.com [Internet]. Troitsk: PCbiosensors company. 2013 – [cited July 18, 2018.]. Available at: http://pcbiosensors. com/technology/technology.htm.
- Myszka DG, He X, Dembo M, Morton TA, Goldstein B. Extending the Range of Rate Constants Available from BIACORE : Interpreting Mass Transport-Influenced Binding Data. Biophysical Journal. 1998; 75 (August): 583–94.
- Lynn NS, Homola J. Biosensor Enhancement Using Grooved Micromixers: Part I, Numerical Studies. Anal Chem. 2015; 87 (11): 5524–30.
- Springer T, Homola J. Biofunctionalized gold nanoparticles for SPR-biosensor-based detection of CEA in blood plasma. Anal Bioanal Chem. 2012; 404 (10): 2869-75.
- Lee J, Cho H, Choi HK, Lee J-Y, Choi J-W. Application of Gold Nanoparticle to Plasmonic Biosensors. Int J Mol Sci. 2018; 19 (7): [about 14 p.]. Available from: http://www.mdpi.com/1422- 0067/19/7/2021