Multiparametric detection of bacterial contamination based on the photonic crystal surface mode detection

Petrova IO1, Konopsky VN2, Sukhanova AV1, Nabiev IR1
About authors

1 Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow

2 Laboratory of Spectroscopy of Condensed Matter, Institute for Spectroscopy, Russian Academy of Sciences, Troitsk

Correspondence should be addressed: Igor R. Nabiev
Kashirskoe shosse 31, Moscow, 115529; moc.liamg@veiban.rogi

About paper

Funding: this work was part of the Federal Targeted Program The National system of Chemical and Biological Security of the Russian Federation (2015-2020) supported by the Ministry of Healthcare of the Russian Federation (State grant No. K-27-НИР/144-5 dated December 24, 2015).

Acknowledgement: the authors wish to thank Tkachuk AP, Head of the Department of Translational Biomedicine (Gamaleya Research Institute of Epidemiology and Microbiology) for rabbit antibodies against the heat-labile toxin LT.

Received: 2018-07-28 Accepted: 2018-08-20 Published online: 2018-09-29

Conventional techniques for food and water quality control and environmental monitoring in general have a number of drawbacks. Below we propose a label-free highly accurate analytical technique for multiplex detection of biomarkers based on the analysis of propagation of Bloch waves on the surface of a photonic crystal. The technique can be used to measure molecular and cell affinity interactions in real time by recording critical and excitation angles of the surface wave on the surface of a photonic crystal. Based on the analysis of photonic crystal surface modes, we elaborated a protocol for the detection of the exotoxin A of Pseudomonas aeruginosa and the heat-labile toxin LT of Escherichia coli. The protocol exploits detection of affinity interactions between antigens pumped through a microfluidic cell and detector antibodies conjugated to the chemically activated silica chip. The proposed technique is highly sensitive, cheap and less time-consuming in comparison with surface plasmon resonance.

Keywords: photonic crystals, surface modes, bacterial toxins, real-time detection