Copyright: © 2018 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

REVIEW

Targeted nanomedicines for applications in preclinical cancer models

Marchiò S1,2, Bussolino F1,2
About authors

1 Department of Oncology, University of Turin, Candiolo, Italy

2 Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Italy

Correspondence should be addressed: Serena Marchió
Institute for Cancer Research and Treatment, University of Torino, 142 Km 3.95, Candiolo, Italy, 10060; ti.ccri@oihcram.aneres

Received: 2018-06-29 Accepted: 2018-08-21 Published online: 2018-12-30
|
  1. Arap W, Pasqualini R, Montalti M, Petrizza L, Prodi L, Rampazzo E et al. Luminescent silica nanoparticles for cancer diagnosis. Curr Med Chem. 2013; 20 (17): 2195–211.
  2. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016; 33 (10): 2373–87.
  3. Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Rev Nanomed Nanobiotechnol. 2017; 9 (1): e1456.
  4. Marchiò S, Soster M, Cardaci S, Muratore A, Bartolini A, Barone V et al. A complex of alpha(6) integrin and E-cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin-like 6. EMBO Mol Med. 2012 Nov; 4 (11): 1156–75.
  5. Soster M, Juris R, Bonacchi S, Genovese D, Montalti M, Rampazzo E et al. Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer. Int J Nanomed. 2012; (7): 4797–807.
  6. Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E et al. Luminescent chemosensors based on silica nanoparticles. Top Curr Chem. 2011; (300): 93–138.
  7. Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E et al. Luminescent silica nanoparticles: extending the frontiers of brightness. Angew Chem Int Ed Engl. 2011; 50 (18): 4056–66.
  8. D'Hallewin MA, Kamuhabwa AR, Roskams T, De Witte PA, Baert L. Hypericin-based fluorescence diagnosis of bladder carcinoma. BJU Int. 2002; 89 (7): 760–3.
  9. Miyashiro I, Miyoshi N, Hiratsuka M, Kishi K, Yamada T, Ohue M et al. Detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging: comparison with infrared imaging. Ann Surg Oncol. 2008; 15 (6): 1640–3.
  10. van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med. 2011; 17 (10): 1315–9.
  11. van der Poel HG, Buckle T, Brouwer OR, Valdes Olmos RA, van Leeuwen FW. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol. 2011; 60 (4): 826–33.
  12. de Leeuw J, van der Beek N, Neugebauer WD, Bjerring P, Neumann HA. Fluorescence detection and diagnosis of non-melanoma skin cancer at an early stage. Lasers Surg Med. 2009; 41 (2): 96–103.
  13. Atlamazoglou V, Yova D, Kavantzas N, Loukas S. Microscopical examination of the localisation patterns of two novel rhodamine derivatives in normal and neoplastic colonic mucosa. Lasers Med Sci. 2001; 16 (4): 253–9.
  14. Marchiò S, Lahdenranta J, Schlingemann RO, Valdembri D, Wesseling P, Arap MA et al. Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell. 2004; 5 (2): 151–62.
  15. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000; 60 (3): 722–7.
  16. Loi M, Di Paolo D, Soster M, Brignole C, Bartolini A, Emionite L et al. Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. J Control Release. 2013; 170 (2): 233–41.
  17. Cossu I, Bottoni G, Loi M, Emionite L, Bartolini A, Di Paolo D et al. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials. 2015; (68): 89–99.
  18. Loi M, Marchiò S, Becherini P, Di Paolo D, Soster M, Curnis F et al. Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. J Control Release. 2010; 145 (1): 66–73.