OPINION

Enabling technologies for the preparation of multifunctional “bullets” for nanomedicine

Martina K, Serpe L, Cavalli R, Cravotto G
About authors

Department of Drug Science & Technology,
Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, Turin, Italy

Correspondence should be addressed to: Giancarlo Cravotto
Via P. Giuria 9, 10125 Turin, Italy; ti.otinu@ottovarc.olracnaig

About paper

Funding: The University of Turin is warmly acknowledged for their financial support (Ricerca Locale 2017).

Received: 2018-06-26 Accepted: 2018-08-30 Published online: 2018-12-30
|
  1. Portehault D, Delacroix S, Gouget G, Grosjean R, Chan-Chang T-H-C. Beyond the Compositional Threshold of Nanoparticle-Based Materials. Accounts of Chemical Research. 2018; 51 (4): 930–9.
  2. Cravotto G, Boffa L. Preparation of nanomaterials under combined ultrasound/microwave irradiation. Pan Stanford Publishing Pte. Ltd.: 2014. p. 203–26
  3. Martina K, Tagliapietra S, Barge A, Cravotto G. Combined Microwaves/Ultrasound, a Hybrid Technology. Top Curr Chem. 2016; 374 (6): 1–27
  4. Davis ME. Brewster, ME Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004; (3): 1023–35.
  5. Barge A, Caporaso M, Cravotto G, Martina K, Tosco P, Aime S et al. Design and Synthesis of a γ1β8‐Cyclodextrin Oligomer: A New Platform with Potential Application as a Dendrimeric Multicarrier. Chem Eur J. 2013; 19 (36): 12086–92.
  6. Martina K, Baricco F, Berlier G, Caporaso M, Cravotto G. Efficient Green Protocols for Preparation of Highly Functionalized β-Cyclodextrin-Grafted Silica. ACS Sustainable Chem Eng. 2014; 2 (11): 2595–603.
  7. Huq R, Mercier L, Kooyman PJ. Incorporation of Cyclodextrin into Mesostructured Silica. Chem Mater. 2001; 13 (12): 4512–9.
  8. Lee J-H, Kang S, Ahn M, Jang H, Min D-H. Development of dual-pore coexisting branched silica nanoparticles for efficient gene-chemo cancer therapy. Small. 2018; 14 (7): 1702564.
  9. Calcio Gaudino E, Tagliapietra S, Martina K, et al. Novel SWCNT platform bearing DOTA and β-cyclodextrin units. "One shot" multidecoration under microwave irradiation. Org Biomol Chem. 2014; (12): 4708–15
  10. Bosca F, Orio L, Tagliapietra S, Corazzari I, Turci F, Martina K, Pastero L, Cravotto G et al Microwave-Assisted Synthesis and Physicochemical Characterization of Tetrafuranylporphyrin- Grafted Reduced-Graphene Oxide. Chem Eur J. 2016; (22): 1608–13.
  11. Duan S, Li J, Zhao N, Xu F-J. Multifunctional hybrids with versatile types of nanoparticles via self-assembly for complementary tumor therapy. Nanoscale. 2018; (10): 7649–57.
  12. Bolden NW, Rangari VK, Jeelani S, Boyoglu S, Singh SR. Synthesis and evaluation of magnetic nanoparticles for biomedical applications. J Nanopart. 2013: 1–9; DOI:10.1155/2013/370812.
  13. Güvener N, Appold L, de Lorenzi F, Golombek SK, Rizzo LY, Lammers T, Kiessling F. Recent advances in ultrasound-based diagnosis and therapy with micro-and nanometer-sized formulations. Methods. 2017; (130): 4–13.
  14. Cavalli R, Soster M, Argenziano M. Nanobubbles: a promising efficient tool for therapeutic delivery. Ther Deliv. 2016; 7 (2): 117–38.
  15. Delalande A, Postema M, Mignet N, Midoux P, Pichon C. Ultrasound and microbubble-assisted gene delivery: recent advances and ongoing challenges. Ther Deliv. 2012; 3 (10): 1199–215.
  16. Cavalli R, Bisazza A, Giustetto P, Civra A, Lembo D, Trotta G et al. Preparation and characterization of dextran nanobubbles for oxygen delivery. Int J Pharm. 2009; 381 (2): 160–5.
  17. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009 Nov; 30 (11): 592–9.
  18. Alvarez-Lorenzo C1, Concheiro A Smart drug delivery systems: from fundamentals to the clinic. Chem Commun. 2014 ; 50 (58): 7743–65.
  19. Liu D, Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics. 2016 Jun 7; 6 (9): 1306–23.
  20. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012 Mar 21; 41 (6): 2323–43.
  21. Caldera F, Argenziano M, Trotta F, Dianzani C, Gigliotti L, Tannous M et al. Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovative pH and time-controlled nanocarrier for improving cancer treatment. Carbohydr Polym. 2018; (194): 111–21.
  22. Chen X, Yao X, Wang C, Chen L, Chen X. Mesoporous silica nanoparticles capped with fluorescence-conjugated cyclodextrin for pH-activated controlled drug delivery and imaging. Microporous Mesoporous Mater. 2015; (217): 46–53.
  23. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014 Nov; 13 (11): 813–27.
  24. Daga M, Ullio C, Argenziano M, Dianzani C, Cavalli R, Trotta F et al. GSH-targeted nanosponges increase doxorubicin-induced toxicity "in vitro" and "in vivo" in cancer cells with high antioxidant defenses. Free Radic Biol Med 2016; (97): 24–37.
  25. Yang J, Lee J, Kang J, Oh SJ, Ko HJ, Son JH et al. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv Mater. 2009 Nov 20; 21 (43): 4339–42.
  26. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005 Nov 8; 21 (23): 10644–54.
  27. Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK et al. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res. 2009 Feb 15; 69 (4): 1659–67.
  28. Maloney E, Hwang JH. Emerging HIFU applications in cancer therapy. Int J Hyperthermia. 2015; 31 (3): 302–9.
  29. Giuntini F, Foglietta F, Marucco AM, Troia A, Dezhkunov NV, Pozzoli A et al. Insight into ultrasound-mediated reactive oxygen species generation by various metal-porphyrin complexes. Free Radic Biol Med. 2018; (121): 190–201.
  30. Serpe L, Foglietta F, Canaparo R. Nanosonotechnology: The next challenge in cancer sonodynamic therapy. Nanotechnology Reviews. 2012; 1 (2): 173–82.
  31. Cavalli, R., Bisazza, A., & Lembo, D. Micro-and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm. 2013; 456 (2): 437–45.
  32. Canaparo R, Varchi G, Ballestri M, Foglietta F, Sotgiu G, Guerrini A et al. Polymeric nanoparticles enhance the sonodynamic activity of meso-tetrakis (4-sulfonatophenyl) porphyrin in an in vitro neuroblastoma model. Int J Nanomedicine. 2013; (8): 4247–63.
  33. Varchi G, Foglietta F, Canaparo R, Ballestri M, Arena F, Sotgiu G et al. Engineered porphyrin loaded core-shell nanoparticles for selective sonodynamic anticancer treatment. Nanomedicine 2015; 10 (23): 3483–94.
  34. Brazzale C, Canaparo R, Racca L, Foglietta F, Durando G, Fantozzi R et al. Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine. 2016; 11 (23): 3053–70.
  35. Kripfgans OD, Fowlkes JB, Miller DL Eldevik OP, Carson PL. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol. 2000; 6 (7): 1177–89.
  36. Prato M, Magnetto C, Jose J, Khadjavi A, Cavallo F, Quaglino E et al. 2H, 3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues. PLoS One. 2015; 10 (3): e0119769.
  37. Basilico N, Magnetto C, D'Alessandro S, Panariti A, Rivolta I, Genova T et al. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium, Toxicol Appl Pharmacol. 2015; 288 (3): 330–8.
  38. Cavalli R, Bisazza A, Rolfo A, Balbis S, Madonnaripa D, Caniggia I et al. Ultrasound-mediated oxygen delivery from chitosan nanobubbles. Int J Pharm. 2009; 378 (1–2): 215–7.
  39. Khadjavi A, Magnetto C, Panariti A, Argenziano M, Gulino G R, Rivolta I et al. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: new insights for chronic wound healing. Toxicol Appl Pharmacol. 2015; 286 (3): 198–206.
  40. Banche G, Prato M, Magnetto C, Allizond V, Giribaldi G, Argenziano M et al. Antimicrobial chitosan nanodroplets: new insights for ultrasound-mediated adjuvant treatment of skin infection. Future Microbiol. 2015; 10 (6): 929–39.
  41. Argenziano M, Banche G, Luganini A, Finesso N, Allizond V, Gulino GR et al. Vancomycin-loaded nanobubbles: A new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. Int J Pharm. 2017; 523 (1): 176–88.
  42. Bisazza A, Civra A, Donalisio M, Lembo D, Cavalli R The in vitro characterization of dextran-based nanobubbles as possible DNA transfection agents. Soft Matter. 2011; 7 (22): 10590–3.
  43. Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M et al. New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. Int J Nanomedicine. 2012; (7): 3309–18.
  44. Cavalli R, Occhipinti S, Argenziano M, Bessone F, Guiot C, Giovarelli M. Nanobubble technology-based HER2 immunotherapy through dendritic cells targeting. Presented at “CRS Annual Meeting & Exposition”, July 16–19 2017; Boston, Massachusetts, USA.
  45. Cavalli R, Argenziano M, Vigna E, Giustetto P, Torres E, Aime S et al. Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents. Colloids Surf B Biointerfaces. 2015; (129): 39–46.
  46. Marano F, Argenziano M, Frairia R, Adamini A, Bosco O, Rinella L et al. Doxorubicin-loaded nanobubbles combined with extracorporeal shock waves: basis for a new drug delivery tool in anaplastic thyroid cancer. Thyroid 2016; 26 (5): 705–16.
  47. Marano F, Frairia R, Rinella L, Argenziano M, Bussolati B, Grange C et al. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocr Relat Cancer. 2017; 24 (6): 275–86.
  48. Marano F, Rinella L, Argenziano M, Cavalli R, Sassi F, D’Amelio P et al. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves. PloS One. 2016; 11 (12): e0168553.
  49. Roberta C, Francesca M, Monica A, Alessandra V, Roberto F, Maria Graziella C. Combining Drug-Loaded Nanobubbles and Extracorporeal Shock Waves for Difficult-to-Treat Cancers. Current Drug Delivery. 2017; (14): 1–3.
  50. Glazer ES, Curley SA. The ongoing history of thermal therapy for cancer. Surg Oncol Clin N Am. 2011; 20 (2): 229–35.
  51. Kosiorek A, Kandulski W, Glaczynska H, Giersig M. Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks. Small. 2005; (1); 439–44.
  52. Barrera G, Serpe L, Celegato F, Coїsson M, Martina K, Canaparo R et al. Surface modification and cellular uptake evaluation of Au-coated Ni80Fe20 nanodiscs for biomedical applications. Interface Focus. 2016; 6 (6). DOI: 10.1098/rsfs.2016.0052.