Copyright: © 2018 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

OPINION

Enabling technologies for the preparation of multifunctional “bullets” for nanomedicine

Martina K, Serpe L, Cavalli R, Cravotto G
About authors

Department of Drug Science & Technology,
Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, Turin, Italy

Correspondence should be addressed to: Giancarlo Cravotto
Via P. Giuria 9, 10125 Turin, Italy; ti.otinu@ottovarc.olracnaig

About paper

Funding: The University of Turin is warmly acknowledged for their financial support (Ricerca Locale 2017).

Received: 2018-06-26 Accepted: 2018-08-30 Published online: 2018-12-30
|
  1. Portehault D, Delacroix S, Gouget G, Grosjean R, Chan-Chang T-H-C. Beyond the Compositional Threshold of Nanoparticle-Based Materials. Accounts of Chemical Research. 2018; 51 (4): 930–9.
  2. Cravotto G, Boffa L. Preparation of nanomaterials under combined ultrasound/microwave irradiation. Pan Stanford Publishing Pte. Ltd.: 2014. p. 203–26
  3. Martina K, Tagliapietra S, Barge A, Cravotto G. Combined Microwaves/Ultrasound, a Hybrid Technology. Top Curr Chem. 2016; 374 (6): 1–27
  4. Davis ME. Brewster, ME Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004; (3): 1023–35.
  5. Barge A, Caporaso M, Cravotto G, Martina K, Tosco P, Aime S et al. Design and Synthesis of a γ1β8‐Cyclodextrin Oligomer: A New Platform with Potential Application as a Dendrimeric Multicarrier. Chem Eur J. 2013; 19 (36): 12086–92.
  6. Martina K, Baricco F, Berlier G, Caporaso M, Cravotto G. Efficient Green Protocols for Preparation of Highly Functionalized β-Cyclodextrin-Grafted Silica. ACS Sustainable Chem Eng. 2014; 2 (11): 2595–603.
  7. Huq R, Mercier L, Kooyman PJ. Incorporation of Cyclodextrin into Mesostructured Silica. Chem Mater. 2001; 13 (12): 4512–9.
  8. Lee J-H, Kang S, Ahn M, Jang H, Min D-H. Development of dual-pore coexisting branched silica nanoparticles for efficient gene-chemo cancer therapy. Small. 2018; 14 (7): 1702564.
  9. Calcio Gaudino E, Tagliapietra S, Martina K, et al. Novel SWCNT platform bearing DOTA and β-cyclodextrin units. "One shot" multidecoration under microwave irradiation. Org Biomol Chem. 2014; (12): 4708–15
  10. Bosca F, Orio L, Tagliapietra S, Corazzari I, Turci F, Martina K, Pastero L, Cravotto G et al Microwave-Assisted Synthesis and Physicochemical Characterization of Tetrafuranylporphyrin- Grafted Reduced-Graphene Oxide. Chem Eur J. 2016; (22): 1608–13.
  11. Duan S, Li J, Zhao N, Xu F-J. Multifunctional hybrids with versatile types of nanoparticles via self-assembly for complementary tumor therapy. Nanoscale. 2018; (10): 7649–57.
  12. Bolden NW, Rangari VK, Jeelani S, Boyoglu S, Singh SR. Synthesis and evaluation of magnetic nanoparticles for biomedical applications. J Nanopart. 2013: 1–9; DOI:10.1155/2013/370812.
  13. Güvener N, Appold L, de Lorenzi F, Golombek SK, Rizzo LY, Lammers T, Kiessling F. Recent advances in ultrasound-based diagnosis and therapy with micro-and nanometer-sized formulations. Methods. 2017; (130): 4–13.
  14. Cavalli R, Soster M, Argenziano M. Nanobubbles: a promising efficient tool for therapeutic delivery. Ther Deliv. 2016; 7 (2): 117–38.
  15. Delalande A, Postema M, Mignet N, Midoux P, Pichon C. Ultrasound and microbubble-assisted gene delivery: recent advances and ongoing challenges. Ther Deliv. 2012; 3 (10): 1199–215.
  16. Cavalli R, Bisazza A, Giustetto P, Civra A, Lembo D, Trotta G et al. Preparation and characterization of dextran nanobubbles for oxygen delivery. Int J Pharm. 2009; 381 (2): 160–5.
  17. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009 Nov; 30 (11): 592–9.
  18. Alvarez-Lorenzo C1, Concheiro A Smart drug delivery systems: from fundamentals to the clinic. Chem Commun. 2014 ; 50 (58): 7743–65.
  19. Liu D, Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics. 2016 Jun 7; 6 (9): 1306–23.
  20. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012 Mar 21; 41 (6): 2323–43.
  21. Caldera F, Argenziano M, Trotta F, Dianzani C, Gigliotti L, Tannous M et al. Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovative pH and time-controlled nanocarrier for improving cancer treatment. Carbohydr Polym. 2018; (194): 111–21.
  22. Chen X, Yao X, Wang C, Chen L, Chen X. Mesoporous silica nanoparticles capped with fluorescence-conjugated cyclodextrin for pH-activated controlled drug delivery and imaging. Microporous Mesoporous Mater. 2015; (217): 46–53.
  23. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014 Nov; 13 (11): 813–27.
  24. Daga M, Ullio C, Argenziano M, Dianzani C, Cavalli R, Trotta F et al. GSH-targeted nanosponges increase doxorubicin-induced toxicity "in vitro" and "in vivo" in cancer cells with high antioxidant defenses. Free Radic Biol Med 2016; (97): 24–37.
  25. Yang J, Lee J, Kang J, Oh SJ, Ko HJ, Son JH et al. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv Mater. 2009 Nov 20; 21 (43): 4339–42.
  26. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005 Nov 8; 21 (23): 10644–54.
  27. Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK et al. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res. 2009 Feb 15; 69 (4): 1659–67.
  28. Maloney E, Hwang JH. Emerging HIFU applications in cancer therapy. Int J Hyperthermia. 2015; 31 (3): 302–9.
  29. Giuntini F, Foglietta F, Marucco AM, Troia A, Dezhkunov NV, Pozzoli A et al. Insight into ultrasound-mediated reactive oxygen species generation by various metal-porphyrin complexes. Free Radic Biol Med. 2018; (121): 190–201.
  30. Serpe L, Foglietta F, Canaparo R. Nanosonotechnology: The next challenge in cancer sonodynamic therapy. Nanotechnology Reviews. 2012; 1 (2): 173–82.
  31. Cavalli, R., Bisazza, A., & Lembo, D. Micro-and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm. 2013; 456 (2): 437–45.
  32. Canaparo R, Varchi G, Ballestri M, Foglietta F, Sotgiu G, Guerrini A et al. Polymeric nanoparticles enhance the sonodynamic activity of meso-tetrakis (4-sulfonatophenyl) porphyrin in an in vitro neuroblastoma model. Int J Nanomedicine. 2013; (8): 4247–63.
  33. Varchi G, Foglietta F, Canaparo R, Ballestri M, Arena F, Sotgiu G et al. Engineered porphyrin loaded core-shell nanoparticles for selective sonodynamic anticancer treatment. Nanomedicine 2015; 10 (23): 3483–94.
  34. Brazzale C, Canaparo R, Racca L, Foglietta F, Durando G, Fantozzi R et al. Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine. 2016; 11 (23): 3053–70.
  35. Kripfgans OD, Fowlkes JB, Miller DL Eldevik OP, Carson PL. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol. 2000; 6 (7): 1177–89.
  36. Prato M, Magnetto C, Jose J, Khadjavi A, Cavallo F, Quaglino E et al. 2H, 3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues. PLoS One. 2015; 10 (3): e0119769.
  37. Basilico N, Magnetto C, D'Alessandro S, Panariti A, Rivolta I, Genova T et al. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium, Toxicol Appl Pharmacol. 2015; 288 (3): 330–8.
  38. Cavalli R, Bisazza A, Rolfo A, Balbis S, Madonnaripa D, Caniggia I et al. Ultrasound-mediated oxygen delivery from chitosan nanobubbles. Int J Pharm. 2009; 378 (1–2): 215–7.
  39. Khadjavi A, Magnetto C, Panariti A, Argenziano M, Gulino G R, Rivolta I et al. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: new insights for chronic wound healing. Toxicol Appl Pharmacol. 2015; 286 (3): 198–206.
  40. Banche G, Prato M, Magnetto C, Allizond V, Giribaldi G, Argenziano M et al. Antimicrobial chitosan nanodroplets: new insights for ultrasound-mediated adjuvant treatment of skin infection. Future Microbiol. 2015; 10 (6): 929–39.
  41. Argenziano M, Banche G, Luganini A, Finesso N, Allizond V, Gulino GR et al. Vancomycin-loaded nanobubbles: A new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. Int J Pharm. 2017; 523 (1): 176–88.
  42. Bisazza A, Civra A, Donalisio M, Lembo D, Cavalli R The in vitro characterization of dextran-based nanobubbles as possible DNA transfection agents. Soft Matter. 2011; 7 (22): 10590–3.
  43. Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M et al. New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. Int J Nanomedicine. 2012; (7): 3309–18.
  44. Cavalli R, Occhipinti S, Argenziano M, Bessone F, Guiot C, Giovarelli M. Nanobubble technology-based HER2 immunotherapy through dendritic cells targeting. Presented at “CRS Annual Meeting & Exposition”, July 16–19 2017; Boston, Massachusetts, USA.
  45. Cavalli R, Argenziano M, Vigna E, Giustetto P, Torres E, Aime S et al. Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents. Colloids Surf B Biointerfaces. 2015; (129): 39–46.
  46. Marano F, Argenziano M, Frairia R, Adamini A, Bosco O, Rinella L et al. Doxorubicin-loaded nanobubbles combined with extracorporeal shock waves: basis for a new drug delivery tool in anaplastic thyroid cancer. Thyroid 2016; 26 (5): 705–16.
  47. Marano F, Frairia R, Rinella L, Argenziano M, Bussolati B, Grange C et al. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocr Relat Cancer. 2017; 24 (6): 275–86.
  48. Marano F, Rinella L, Argenziano M, Cavalli R, Sassi F, D’Amelio P et al. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves. PloS One. 2016; 11 (12): e0168553.
  49. Roberta C, Francesca M, Monica A, Alessandra V, Roberto F, Maria Graziella C. Combining Drug-Loaded Nanobubbles and Extracorporeal Shock Waves for Difficult-to-Treat Cancers. Current Drug Delivery. 2017; (14): 1–3.
  50. Glazer ES, Curley SA. The ongoing history of thermal therapy for cancer. Surg Oncol Clin N Am. 2011; 20 (2): 229–35.
  51. Kosiorek A, Kandulski W, Glaczynska H, Giersig M. Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks. Small. 2005; (1); 439–44.
  52. Barrera G, Serpe L, Celegato F, Coїsson M, Martina K, Canaparo R et al. Surface modification and cellular uptake evaluation of Au-coated Ni80Fe20 nanodiscs for biomedical applications. Interface Focus. 2016; 6 (6). DOI: 10.1098/rsfs.2016.0052.