OPINION

Autonomous bioluminescent systems: prospects for use in the imaging of living organisms

About authors

1 Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia

2 Pirogov Russian National Research Medical University, Moscow, Russia

Correspondence should be addressed: Aleksandr S. Shcheglov
Miklukho-Маklaya, 16/10, Moscow, 117997; ur.liam@trakuj

About paper

Funding: the study was supported by the Russian Science Foundation (Grant №17-14-01169).

Acknowledgements: we thank to the Center for Precision Genome Editing and Genetic Technologies for Biomedicine (Moscow) for the genetic research methods.

Author contribution: Osipova ZM, Shcheglov AS — literature analysis, article authoring; Yampolsky IV — study planning, manuscript editing.

Received: 2019-12-03 Accepted: 2019-12-12 Published online: 2019-12-20
|
  1. Kiessling F, Pichler BJ, Hauff P, editors. Small animal imaging: Basics and practical guide. 2nd ed. Cham: Springer International Publishing AG, 2017.
  2. Kubala E, Menzel MI, Feuerecker B, Glaser SJ, Schwaiger M. Molecular Imaging. In: Canales A, editor. Biophysical techniques in drug discovery. London: Royal Society of Chemistry, 2017; p. 277–306.
  3. Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev. 2016; 45 (21): 6048–77.
  4. Specht EA, Braselmann E, Palmer AE. A critical and comparative review of fluorescent tools for live-cell imaging. Annu Rev Physiol. 2017; (79): 93–117.
  5. Yeh HW, Ai HW. Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu Rev Anal Chem. 2019; (12): 129–50.
  6. Shimomura O, Yampolsky I. Back matter. In: Shimomura O, Yampolsky I, editors. Bioluminescence: Chemical principles and methods. 3rd ed. Singapore: World Scientific Co. Pte. Ltd., 2019; p. 381–522.
  7. Kotlobay AA, Dubinnyi MA, Purtov KV, Guglya EB, Rodionova NS, et al. Bioluminescence chemistry of fireworm Odontosyllis. Proc Natl Acad Sci USA. 2019; 116 (38): 18911–6.
  8. Kotlobay AA, Sarkisyan KS, Mokrushina YA, Marcet-Houben M, Serebrovskaya EO, et al. Genetically encodable bioluminescent system from fungi. Proc Natl Acad Sci USA. 2018; 115 (50): 12728–32.
  9. Kanie S, Nakai R, Ojika M, Oba Y. 2-S-cysteinylhydroquinone is an intermediate for the firefly luciferin biosynthesis that occurs in the pupal stage of the japanese firefly, Luciola lateralis. Bioorg Chem. 2018; (80): 223–9.
  10. Gomi K, Kajiyama N. Oxyluciferin, a luminescence product of firefly luciferase, is enzymatically regenerated into luciferin. J Biol Chem. 2001; 276 (39): 36508–13.
  11. Cheng YY, Liu YJ. Luciferin regeneration in firefly bioluminescence via proton transfer facilitated hydrolysis, condensation and chiral inversion. Chem Phys Chem. 2019; (20): 1719–27.
  12. Tu SC. Activity coupling and complex formation between bacterial luciferase and flavin reductases. Photochem Photobiol Sci. 2008; 7 (2): 183–8.
  13. Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors. 2011; 11 (1): 180–206.
  14. Gupta RK, Patterson SS, Ripp S, Simpson ML, Sayler GS. Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Res. 2003; 4 (3): 305–13.
  15. Patterson SS, Dionisi HM, Gupta RK, Sayler GS. Codon optimization of bacterial luciferase (lux) for expression in mammalian cells. J Ind Microbiol Biotechnol. 2005; 32 (3): 115–23.
  16. Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, et al. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PloS one. 2010; 5 (8): e12441.
  17. Krichevsky A, Meyers B, Vainstein A, Maliga P, Citovsky V. Autoluminescent plants. PloS one. 2010; 5 (11): e15461.
  18. Xu T, Ripp S, Sayler GS, Close DM. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells. PLoS One. 2014; 9 (5): e96347.
  19. Class B, Thorne N, Aguisanda F, Southall N, McKew JC, et al. High-throughput viability assay using an autonomously bioluminescent cell line with a bacterial lux reporter. J Lab Autom. 2015; 20 (2): 164–74.
  20. Xu T, Young A, Marr E, Sayler G, Ripp S, et al. A rapid and reagent-free bioassay for the detection of dioxin-like compounds and other aryl hydrocarbon receptor (AhR) agonists using autobioluminescent yeast. Anal Bioanal Chem. 2018; 410 (4): 1247–56.
  21. Xu T, Kirkpatrick A, Toperzer J, Ripp S, Close D. Improving estrogenic compound screening efficiency by using self-modulating, continuously bioluminescent human cell bioreporters expressing a synthetic luciferase. Toxicol Sci. 2019; 168 (2): 551–60.
  22. Gregor C, Gwosch KC, Sahl SJ, Hell SW. Strongly enhanced bacterial bioluminescence with the ilux operon for single-cell imaging. Proc Natl Acad Sci USA. 2018; 115 (5): 962–7.
  23. Gregor C, Pape JK, Gwosch KC, Gilat T, Sahl SJ, et al. Autonomous bioluminescence imaging of single mammalian cells with the bacterial bioluminescence system. bioRxiv. 2019: 798108.
  24. Srinivasan P, Griffin NM, Joshi P, Thakur DP, Nguyen-Le A, et al. An Autonomous Molecular Bioluminescent Reporter (AMBER) for voltage imaging in freely moving animals. bioRxiv. 2019: 845198.
  25. Purtov KV, Petushkov VN, Baranov MS, Mineev KS, Rodionova NS, et al. The chemical basis of fungal bioluminescence. Angew Chem Int Ed. 2015; 54 (28): 8124–8.
  26. Mitiouchkina T, Mishin AS, Somermeyer LG, Markina NM, Chepurnyh TV, et al. Plants with self-sustained luminescence. bioRxiv. 2019: 809376.
  27. Khakhar A, Starker C, Chamness J, Lee N, Stokke S. Building customizable auto-luminescent luciferase-based reporters in plants. bioRxiv. 2019: 809533.