ORIGINAL RESEARCH

Cerebral cortex activation during the Sternberg verbal working memory task

Bakulin IS1, Zabirova AH1, Kopnin PN1, Sinitsyn DO1, Poydasheva AG1, Fedorov MV2, Gnedovskaya EV1,2, Suponeva NA1, Piradov MA1
About authors

1 Research Center of Neurology, Moscow, Russia

2 Skoltech, Moscow, Russia

Correspondence should be addressed: Ilya S. Bakulin
Volokolamskoye shosse, 80, Moscow, 125367; ur.ygoloruen@nilukab

About paper

Author contribution: Bakulin IS, Fedorov MV, Gnedovskaya EV, Suponeva NA, Piradov MA — study planning and design; Bakulin IS, Zabirova AH — literature analysis; Bakulin IS, Poydasheva AG — data acquisition; Zabirova AH, Kopnin PN, Sinitsyn DO — data analysis; Bakulin IS, Zabirova AH, Sinitsyn DO, Fedorov MV, Gnedovskaya EV, Suponeva NA, Piradov MA — data interpretation; Bakulin IS, Zabirova AH — manuscript draft preparation; Kopnin PN, Sinitsyn DO, Poydasheva AG, Fedorov MV, Gnedovskaya EV, Suponeva NA, Piradov MA — manuscript draft editing; all the authors — final version of the article preparation.

Received: 2020-01-22 Accepted: 2020-02-22 Published online: 2020-03-01
|
  1. Archer JA, Lee A, Qiu A, Chen SA. Working memory, age and education: A lifespan fMRI study. PLoS One. 2018; 13 (3): e0194878.
  2. Chai WJ, Abd Hamid AI, Abdullah JM. Working Memory From the Psychological and Neurosciences Perspectives: A Review. Front Psychol. 2018; 9: 401.
  3. D’Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol. 2015; 66: 115–42.
  4. Fuster JM. Unit activity in prefrontal cortex during delayed- response performance: neuronal correlates of transient memory. J Neurophysiol. 1973; 36 (1): 61–78.
  5. Fuster JM, Bauer RH, Jervey JP. Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res. 1985; 330 (2): 299–307.
  6. Riley MR, Constantinidis C. Role of Prefrontal Persistent Activity in Working Memory. Front Syst Neurosci. 2016; 9: 181.
  7. Egli T, Coynel D, Spalek K, Fastenrath M, Freytag V, Heck A et al. Identification of Two Distinct Working Memory-Related Brain Networks in Healthy Young Adults. eNeuro. 2018; 5 (1): pii: ENEURO.0222-17.2018.
  8. Cohen JR, Sreenivasan KK, D’Esposito M. Correspondence between stimulus encoding- and maintenance-related neural processes underlies successful working memory. Cereb Cortex. 2014; 24 (3): 593–9.
  9. Narayanan NS, Prabhakaran V, Bunge SA, Christoff K, Fine EM, Gabrieli JD. The role of the prefrontal cortex in the maintenance of verbal working memory: an event-related FMRI analysis. Neuropsychology. 2005; 19 (2): 223–32.
  10. Beynel L, Davis SW, Crowell CA, Hilbig SA, Lim W, Nguyen D, et al. Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: A randomized within-subject comparison. PLoS One. 2019; 14 (3): e0213707.
  11. Emch M, von Bastian CC, Koch K. Neural correlates of verbal working memory: An fMRI meta-analysis. Front Hum Neurosci. 2019; 13: 180.
  12. Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, et al. Modelling neural correlates of working memory: a coordinate- based meta-analysis. Neuroimage. 2012; 60 (1): 830–46.
  13. Xu Y. Reevaluating the Sensory Account of Visual Working Memory Storage. Trends Cogn Sci. 2017; 21 (10): 794–815.
  14. Sternberg, S. High-speed scanning in human memory. Science. 1966; 153 (3736): 652–4.
  15. Brunoni AR, Vanderhasselt MA. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn. 2014; 86: 1–9.
  16. Jiang Y, Guo Z, Xing G, He L, Peng H, Du F, et al. Effects of High- Frequency Transcranial Magnetic Stimulation for Cognitive Deficit in Schizophrenia: A Meta-Analysis. Front Psychiatry. 2019; 10: 135.
  17. Sack AT, Kadosh RC, Schuhmann T, Moerel M, Walsh V, Goebel R. Optimizing functional accuracy of TMS in cognitive studies: A comparison of methods. J Cogn Neurosci. 2009; 21 (2): 207–21.
  18. Wen X, Wang H, Liu Z, Liu C, Li K, Ding M, et al. Dynamic Top- down Configuration by the Core Control System During Working Memory. Neuroscience. 2018; 391: 13–24.
  19. Woodward TS, Feredoes E, Metzak PD, Takane Y, Manoach DS. Epoch-specific functional networks involved in working memory. Neuroimage. 2013; 65: 529–39.
  20. Motes MA, Rypma B. Working memory component processes: Isolating BOLD signal changes. Neuroimage. 2010; 49 (2): 1933–41.
  21. Hamidi M, Tononi G, Postle BR. Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation. Neuropsychologia. 2009; 47 (2): 295–302.
  22. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971; 9 (1): 97–113.
  23. Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley Jr. WG, Froelich JW, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013; 37 (3): 501–30.
  24. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011; 106 (3): 1125–65. Available from: http://www.freesurfer. net/fswiki/CorticalParcellation_Yeo2011.
  25. xjView. Version 9.6 [software]. Available from: http://www. alivelearn.net/xjview
  26. Trapp S, Mueller K, Lepsien J, Kraemer B, Gruber O. Different neural capacity limitations for articulatory and non-articulatory maintenance of verbal information. Exp Brain Res. 2014; 232 (2): 619–28.
  27. Kim H. Neural activity during working memory encoding, maintenance, and retrieval: A network-based model and meta- analysis. Hum Brain Mapp. 2019; 40 (17): 4912–33.
  28. Soreq E, Leech R, Hampshire A. Dynamic network coding of working-memory domains and working-memory processes. Nat Commun. 2019; 10 (1): 936.
  29. Nee DE, Brown JW, Askren MK, Berman MG, Demiralp E, Krawitz A, et al. A meta-analysis of executive components of working memory. Cereb Cortex. 2013; 23 (2): 264–82.
  30. Rozovskaya RI, Pechenkova EV, Mershina EA, Machinskaya RI. fMRI Study of Retention of Images with Different Emotional Valence in the Working Memory. Psychology. Journal of the Higher School of Economics. 2014; 11 (1): 27–48. Russian.