Copyright: © 2020 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Predictive monitoring of secondary epidemic waves of COVID-19 in Iran, Russia and other countries

Kovriguine DA1, Nikitenkova SP2
About authors

1 Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia

2 National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

Correspondence should be addressed: Svetlana P. Nikitenkova
Gagarina, 23, Nizhny Novgorod; 603950; moc.liamg@avoknetikins

About paper

Author contribution: Kovriguine DA — research planning, literature analysis, data analysis and interpretation, manuscript preparation; Nikitenkova SP — research planning, literature analysis, data analysis and interpretation, manuscript preparation.

Received: 2020-07-13 Accepted: 2020-08-02 Published online: 2020-08-13
|
  1. Moftakhar L, Mozhgan SEIF, Safe MS. Exponentially Increasing Trend of Infected Patients with COVID-19 in Iran: A Comparison of Neural Network and ARIMA Forecasting Models. Iranian Journal of Public Health. 2020; 49: 92–100.
  2. Tran TT, Pham LT, Ngo QX. Forecasting epidemic spread of SARS-CoV-2 using ARIMA model (Case study: Iran). Global Journal of Environmental Science and Management. 2020; 6 (Special Issue (Covid-19)): 1–10.
  3. Zareie B, Roshani A, Mansournia MA, Rasouli MA, Moradi G. A model for COVID-19 prediction in Iran based on China parameters. 2020; medRxiv.
  4. Ahmadi A, Fadai Y, Shirani M, Rahmani F. Modeling and forecasting trend of COVID-19 epidemic in Iran until May 13, 2020. Medical Journal of The Islamic Republic of Iran (MJIRI). 2020; 34 (1): 183–95.
  5. Li L, Yang Z, Dang Z, Meng C, Huang J, Meng H, Wang D, Chen G, Zhang J, Peng H, Shao Y. Propagation analysis and prediction of the COVID-19. Infectious Disease Modelling. 2020; 5: 282–92.
  6. Kovriguine D, Nikitenkova S. On the secondary waves of the pandemic launched in Iran and other countries. medRxiv. 2020; DOI: https://doi.org/10.1101/2020.06.20.20136283.
  7. Nejmark YuI. Matematicheskie modeli v estestvoznanii i tehnike. N. Novgorod: Izd-vo Nizhegorodskogo universiteta im. N. I. Lobachevskogo. 2004; 401 s. Russian.
  8. Source сode Maple-18. Available from: https://kovriguineda. ucoz.ru/COVID-19/COVID-19-Iran.mw.
  9. Source сode Maple-18. Available from: https://kovriguineda. ucoz.ru/COVID-19/COVID-19-Russia.mw.
  10. Source сode Maple-18. Available from: https://kovriguineda. ucoz.ru/COVID-19/COVID-19-Ukraine.mw.
  11. Meyer P. Bi-logistic growth. Technological forecasting and social change. 1994; 47 (1): 89–102.
  12. Lavrova AI, Postnikov EB, Manicheva OA, Vishnevsky BI. Bi-logistic model for disease dynamics caused by Mycobacterium tuberculosis in Russia. Royal Society open science. 2017; 4 (9): 171033.
  13. Dattoli G, et al. On the evolution of covid-19 in Italy: a follow up note. Available from: arXiv preprint arXiv:2003. 2020; 12667.
  14. Dattoli G, Di Palma E, Licciardi S, Sabia E. A Note on the Evolution of Covid-19 in Italy, arXiv:2003.08684v1 [q-bio.PE], 19 Mar 2020.
  15. Bhattacharya S, Islam MM, De A. Search for the trend of COVID-19 infection following Farr's law, IDEA model and power law. medRxiv. 2020; Available from: https://doi.org/10.1101/202 0.05.04.20090233.
  16. Singer HM. The COVID-19 pandemic: growth patterns, power law scaling, and saturation. medRxiv. 2020; Available from: https:// doi.org/10.1101/2020.07.12.20152140.
  17. Nikitenkova SP, Kovriguine DA. It's the very time to learn a pandemic lesson: why have predictive techniques been ineffective when describing long-term events? medRxiv. 2020; Available from: https://doi.org/10.1101/2020.06.01.20118869.
  18. Mummert A, et al. A perspective on multiple waves of influenza pandemics. PloS one. 2013; 8 (4): e60343.
  19. Lakman IA, Agapitov AA, Sadikova LF, Chernenko OV, Novikov SV, Popov DV, i dr. Vozmozhnosti matematicheskogo prognozirovanija koronavirusnoj infekcii v Rossijskoj Federacii. Arterial'naja gipertenzija. 2020; 26 (3): 288–94. Dostupno po ssylke: https:// doi.org/10.18705/1607-419X-2020-26-3-288-294. Russian.
  20. Holmdahl I, Buckee C. Wrong but useful — what covid-19 epidemiologic models can and cannot tell us. N Engl J Med. 2020 May 15. DOI: 10.1056/NEJMp2016822.
  21. Ivannikov YuG, Ogarkov PI. Opyt matematicheskogo komp'juternogo prognozirovanija jepidemij grippa dlja bol'shih territorij. Zhurnal infektologii. 2012; 4 (3): 101–06. Available from: https://doi. org/10.22625/2072-6732-2012-4-3-101-106. Russian.
  22. Luo Y, Schaposnik LP. Minimal percolating sets for mutating infectious diseases. Physical Review Research. 2020; 2 (2): 023001.
  23. de Arruda GF, Petri G, Moreno Y. Social contagion models on hypergraphs. Physical Review Research. 2020; 2 (2): 023032.