ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Гипоксия усиливает трансцитоз в энтероцитах кишечника

Д. В. Мальцева1, М. Ю. Шкурников1,2, С. А. Нерсисян1, С. В. Никулин1, А. А. Курносов1, М. П. Райгородская3, А. И. Осипьянц2,4, Е. А. Тоневицкий5
Информация об авторах

1 Национальный исследовательский университет Высшая школа экономики, Москва, Россия

2 Московский научно-исследовательский онкологический институт имени П. А. Герцена — филиал Национального медицинского исследовательского центра радиологии, Москва, Россия

3 Научно-технический центр «БиоКлиникум», Москва, Россия

4 Дальневосточный федеральный университет, Владивосток, Россия

5 Фонд развития инновационного научно-технологического центра «Долина Менделеева», Москва, Россия

Для корреспонденции: Диана Васильевна Мальцева
ул. Вавилова, д. 7, г. Москва, 117321; moc.liamg@avestlamd

Информация о статье

Финансирование: работа выполнена при финансовой поддержке государства в лице Минобрнауки России, уникальный идентификатор соглашения: RFMEFI61719X0056.

Благодарности: авторы благодарят Центр коллективного пользования «Протеом человека» (ИБМХ) за возможность использования оборудования.

Вклад авторов: Д. В. Мальцева — молекулярно-биологические исследования, анализ данных, написание статьи; М. Ю. Шкурников — обработка данных транскриптома, секвенирования, статистический анализ; С. А. Нерсисян — обработка данных секвенирования, биоинформатический анализ, функциональный анализ генов; С. В. Никулин — работа с культурой клеток, подготовка образцов для анализа протеома, обработка данных протеома; А. А. Курносов — подготовка образцов для секвенирования микроРНК, анализ данных; М. П. Райгородская — анализ экспрессии генов методом ПЦР-РВ, транскриптомный анализ; А. И. Осипьянц — культуральная работа, подготовка образцов для анализа протеома и транскриптома; Е. А. Тоневицкий — организация исследования, анализ данных, написание статьи.

Статья получена: 08.08.2020 Статья принята к печати: 21.08.2020 Опубликовано online: 28.08.2020
|
  1. Chang C-S, Kao C-Y. Current understanding of the gut microbiota shaping mechanisms. J Biomed Sci. 2019; 26 (1): 59.
  2. Solis AG, Klapholz M, Zhao J, Levy M. The bidirectional nature of microbiome-epithelial cell interactions. Curr Opin Microbiol. Elsevier Current Trends. 2020; 56: 45–51.
  3. Hu L, Tall BD, Curtis SK, Kopecko DJ. Enhanced microscopic definition of Campylobacter jejuni 81-176 adherence to, invasion of, translocation across, and exocytosis from polarized human intestinal Caco-2 cells. Infect Immun. American Society for Microbiology Journals. 2008; 76 (11): 5294–304.
  4. Blanco LP, DiRita VJ. Bacterial-associated cholera toxin and GM1 binding are required for transcytosis of classical biotype Vibrio cholerae through an in vitro M cell model system. Cell Microbiol. 2006; 8 (6): 982–98.
  5. Bartfeld S. Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids. Dev Biol Academic Press. 2016; 420 (2): 262–70.
  6. Sakharov D, Maltseva D, Knyazev E, Nikulin S, Poloznikov A, Shilin S, et al. Towards embedding Caco-2 model of gut interface in a microfluidic device to enable multi-organ models for systems biology. BMC Syst Biol BioMed Central. 2019; 13 (S1): 19.
  7. Panigrahi P, Bamford P, Horvath K, Morris JG, Gewolb IH. Escherichia coli transcytosis in a Caco-2 cell model: implications in neonatal necrotizing enterocolitis. Pediatr Res Nature Publishing Group. 1996; 40 (3): 415–21.
  8. Rubio APD, Martínez J, Palavecino M, Fuentes F, López CMS, Marcilla A, et al. Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model. Sci Rep Nature Publishing Group. 2020; 10 (1): 3120.
  9. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015; 17 (5): 662–71.
  10. Cummins EP, Crean D. Hypoxia and inflammatory bowel disease. Microbes Infect. 2017; 19 (3): 210–21.
  11. Sandvig K, Torgersen ML, Engedal N, Skotland T, Iversen T-G. Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett. John Wiley & Sons, Ltd., 2010; 584 (12): 2626–34.
  12. Moisenovich M, Tonevitsky A, Agapov I, Niwa H, Schewe H, Bereiter-Hahn J. Differences in endocytosis and intracellular sorting of ricin and viscumin in 3T3 cells. Eur J Cell Biol. 2002; 81 (10): 529–38.
  13. Khaustova NA, Maltseva DV, Oliveira-Ferrer L, Stürken C, Milde- Langosch K, Makarova JA, et al. Selectin-independent adhesion during ovarian cancer metastasis. Biochimie. 2017; 142: 197–206.
  14. Maltseva D, Raygorodskaya M, Knyazev E, Zgoda V, Tikhonova O, Zaidi S, et al. Knockdown of the α5 laminin chain affects differentiation of colorectal cancer cells and their sensitivity to chemotherapy. Biochimie. 2020; 174: 107–16.
  15. Gerasimenko T, Nikulin S, Zakharova G, Poloznikov A, Petrov V, Baranova A, et al. Impedance spectroscopy as a tool for monitoring performance in 3D models of epithelial tissues. Front Bioeng Biotechnol. 2020; 7: 474.
  16. Tonevitsky AG, Agapov II, Shamshiev AT, Temyakov DE, Pohl P, Kirpichnikov MP. Immunotoxins containing A-chain of mistletoe lectin I are more active than immunotoxins with ricin A-chain. FEBS Lett. 1996; 392 (2): 166–8.
  17. Moisenovich M, Tonevitsky A, Maljuchenko N, Kozlovskaya N, Agapov I, Volknandt W, et al. Endosomal ricin transport: involvement of Rab4- and Rab5-positive compartments. Histochem Cell Biol. 2004; 121 (6): 429–39.
  18. Agapov II, Tonevitsky AG, Moysenovich MM, Maluchenko NV, Weyhenmeyer R, Kirpichnikov MP. Mistletoe lectin dissociates into catalytic and binding subunits before translocation across the membrane to the cytoplasm. FEBS Lett. 1999; 452 (3): 211–4.
  19. Agapov II, Tonevitsky AG, Maluchenko NV, Moisenovich MM, Bulah YS, Kirpichnikov MP. Mistletoe lectin A-chain unfolds during the intracellular transport. FEBS Lett. 1999; 464 (1–2): 63–6.
  20. Pohl P, Antonenko YN, Evtodienko VY, Pohl EE, Saparov SM, Agapov II, et al. Membrane fusion mediated by ricin and viscumin. Biochim Biophys Acta. 1998; 1371 (1): 11–6.
  21. Kudriaeva A, Galatenko V, Maltseva D, Khaustova N, Kuzina E, Tonevitsky A, et al. The transcriptome of type I murine astrocytes under interferon-Gamma exposure and remyelination stimulus. Molecules. 2017; 22 (5): 808.
  22. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011; 17 (1): 10.
  23. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012; 40 (1): 37–52.
  24. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15 (12): 550.
  25. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2018; 46 (D1): D239–45.
  26. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One. 2018; 13 (10): e0206239.
  27. Flora AD, Teel LD, Smith MA, Sinclair JF, Melton-Celsa AR, O’Brien AD. Ricin crosses polarized human intestinal cells and intestines of ricin-gavaged mice without evident damage and then disseminates to mouse kidneys. PLoS One. 2013; 8 (7): e69706.
  28. Macutkiewicz C, Carlson G, Clark E, Dobrindt U, Roberts I, Warhurst G. Characterisation of Escherichia coli strains involved in transcytosis across gut epithelial cells exposed to metabolic and inflammatory stress. Microbes Infect. 2008; 10 (4): 424–31.
  29. Ko C-W, Qu J, Black DD, Tso P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol. 2020; 17 (3): 169–83.
  30. Lo CC, Coschigano KT. ApoB48 as an efficient regulator of intestinal lipid transport. Front Physiol. 2020; 11: 796.