ORIGINAL RESEARCH

Structural and functional biomarkers of efficacy of navigated repetitive transcranial magnetic stimulation in therapy for trigeminal neuralgia

About authors

Research Center of Neurology, Moscow, Russia

Correspondence should be addressed: Alexandra G. Poydasheva
Volokolamsckoe shosse, 80, Moscow, 125367; ur.ygoloruen@avehsadyop

About paper

Author contribution: Poydasheva AG, Bakulin IS, Suponeva NA designed and planned the study; Poydasheva AG analyzed the literature; Poydasheva AG, Sinitsyn DO collected and analyzed the obtained data, wrote the draft version of the manuscript; All authors participated in editing the manuscript.

Compliance with ethical standards: the study was approved by the local Ethics Committee of the Research Center of Neurology (Protocol № 9–4/16 dated October 5, 2016) and complied with the Declaration Helsinki; informed consent was obtained from all study participants.

Received: 2021-05-18 Accepted: 2021-06-12 Published online: 2021-06-12
|
  1. De Toledo IP, Conti Réus J, Fernandes M, Porporatti AL, Peres MA, Takaschima A, et al. Prevalence of trigeminal neuralgia: A systematic review. J Am Dent Assoc. 2016; 147 (7): 570–6.e2.
  2. Bendtsen L, Zakrzewska JM, Abbott J, Braschinsky M, Di Stefano G, Donnet A, et al. European Academy of Neurology guideline on trigeminal neuralgia. Eur J Neurol. 2019; 26 (6): 831–49.
  3. Tomasello F, Esposito F, Abbritti RV, Angileri FF, Conti A, Cardali SM, et al. Microvascular Decompression for Trigeminal Neuralgia: Technical Refinement for Complication Avoidance. World Neurosurg. 2016; 94: 26–31.
  4. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol. 2020; 131 (2): 474–528.
  5. Khokhlova TYu, Stepanchenko AV, Mamedov TR, Grigoreva SE, Zhikhoreva EA. ranskranial`naya magnitnaya stimulyaciya — sovremenny`j metod lecheniya obostreniya nevralgii trojnichnogo nerva. Nejrodiagnostika i vy`sokie biomedicinskie texnologii. 2007; (3): 32–38. Russian.
  6. Terranova C, Rizzo V, Cacciola A, Chillemi G, Calamuneri A, Milardi D, et al. Is There a Future for Non-invasive Brain Stimulation as a Therapeutic Tool? Front Neurol. 2019; 9: 1146.
  7. DosSantos MF, Oliveira AT, Ferreira NR, Carvalho ACP, Rosado de Castro PH. The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag. 2018; 2018: 2368386.
  8. Herrero Babiloni A, Guay S, Nixdorf DR, de Beaumont L, Lavigne G. Non-invasive brain stimulation in chronic orofacial pain: a systematic review. J Pain Res. 2018; 11: 1445–57.
  9. Ayache SS, Ahdab R, Chalah MA, Farhat WH, Mylius V, Goujon C, et al. Analgesic effects of navigated motor cortex rTMS in patients with chronic neuropathic pain. Eur J Pain. 2016; 20 (9): 1413–22.
  10. Guerra A, López-Alonso V, Cheeran B, Suppa A. Variability in noninvasive brain stimulation studies: Reasons and results. Neurosci Lett. 2020; 719: 133330.
  11. Kar SK. Predictors of Response to Repetitive Transcranial Magnetic Stimulation in Depression: A Review of Recent Updates. Clin Psychopharmacol Neurosci. 2019; 17 (1): 25–33.
  12. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017; 23 (1): 28–38.
  13. Ge R, Downar J, Blumberger DM, Daskalakis ZJ, Vila-Rodriguez F. Functional connectivity of the anterior cingulate cortex predicts treatment outcome for rTMS in treatment-resistant depression at 3-month follow-up. Brain Stimul. 2020; 13 (1): 206–14.
  14. Furtado CP, Hoy KE, Maller JJ, Savage G, Daskalakis ZJ, Fitzgerald PB. An investigation of medial temporal lobe changes and cognition following antidepressant response: a prospective rTMS study. Brain Stimul. 2013; 6 (3): 346–54.
  15. Poeppl TB, Langguth B, Lehner A, Frodl T, Rupprecht R, Kreuzer PM, et al. Brain stimulation-induced neuroplasticity underlying therapeutic response in phantom sounds. Hum Brain Mapp. 2018 Jan; 39 (1): 554–62.
  16. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007; 38(1): 95–113.
  17. Henssen D, Dijk J, Knepflé R, Sieffers M, Winter A, Vissers K. Alterations in grey matter density and functional connectivity in trigeminal neuropathic pain and trigeminal neuralgia: A systematic review and meta-analysis. Neuroimage Clin. 2019; 24: 102039.
  18. Ocklenburg S, Friedrich P, Güntürkün O, Genç E. Voxel-wise grey matter asymmetry analysis in left- and right-handers. Neurosci Lett. 2016; 633: 210–4.
  19. Liang X, Zhao C, Jin X, Jiang Y, Yang L, Chen Y, et al. Sex-related human brain asymmetry in hemispheric functional gradients. Neuroimage. 2021; 229: 117761.
  20. Obermann M, Rodriguez-Raecke R, Naegel S, Holle D, Mueller D, Yoon MS, et al. Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. Neuroimage. 2013; 74: 352–8.
  21. Lovo EE, Torres B, Campos F, Caceros V, Reyes WA, Barahona KC, et al. Stereotactic Gamma Ray Radiosurgery to the Centromedian and Parafascicular Complex of the Thalamus for Trigeminal Neuralgia and Other Complex Pain Syndromes. Cureus. 2019; 11 (12): e6421.
  22. Henssen D, Giesen E, van der Heiden M, Kerperien M, Lange S, van Cappellen van Walsum AM, et al. A systematic review of the proposed mechanisms underpinning pain relief by primary motor cortex stimulation in animals. Neurosci Lett. 2020; 719: 134489.
  23. Xiao X, Zhang YQ. A new perspective on the anterior cingulate cortex and affective pain. Neurosci Biobehav Rev. 2018; 90: 200–11.
  24. Moon HC, Heo WI, Kim YJ, Lee D, Won SY, Kim HR, et al. Optical inactivation of the anterior cingulate cortex modulate descending pain pathway in a rat model of trigeminal neuropathic pain created via chronic constriction injury of the infraorbital nerve. J Pain Res. 2017; 10: 2355–64.
  25. Kudo K, Takahashi T, Suzuki S. The changes of c-Fos expression by motor cortex stimulation in the deafferentation pain model. Neurol Med Chir (Tokyo). 2014; 54 (7): 537–44.
  26. Ohnishi T, Hayashi T, Okabe S, Nonaka I, Matsuda H, Iida H, et al. Endogenous dopamine release induced by repetitive transcranial magnetic stimulation over the primary motor cortex: an [11C] raclopride positron emission tomography study in anesthetized macaque monkeys. Biol Psychiatry. 2004; 55 (5): 484–9.
  27. Kim CE, Kim YK, Chung G, Jeong JM, Lee DS, Kim J, et al. Largescale plastic changes of the brain network in an animal model of neuropathic pain. Neuroimage. 2014; 98: 203–15.
  28. Cerminara NL, Koutsikou S, Lumb BM, Apps R. The periaqueductal grey modulates sensory input to the cerebellum: a role in coping behaviour? Eur J Neurosci. 2009; 29: 2197–206.
  29. Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF. Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans: a functional magnetic resonance imaging study. Neurosci Lett. 2003; 335: 202–6.
  30. Moulton EA, Schmahmann JD, Becerra L, Borsook D. The cerebellum and pain: passive integrator or active participator? Brain Res Rev. 2010 Oct 5; 65 (1): 14–27.
  31. Yang S, Chang MC. Chronic Pain: Structural and Functional Changes in Brain Structures and Associated Negative Affective States. Int J Mol Sci. 2019; 20 (13): 3130.
  32. Hamid P, Malik BH, Hussain ML. Noninvasive Transcranial Magnetic Stimulation (TMS) in Chronic Refractory Pain: A Systematic Review. Cureus. 2019; 11 (10): e6019.
  33. Fonseka TM, MacQueen GM, Kennedy SH. Neuroimaging biomarkers as predictors of treatment outcome in Major Depressive Disorder. J Affect Disord. 2018; 233: 21–35.