ORIGINAL RESEARCH

Alterations in tanycytes and related cell populations of arcuate nucleus in streptozotocin-induced Alzheimer disease model

About authors

Research Center of Neurology, Moscow, Russia

Correspondence should be addressed: Dmitry N. Voronkov
per. Obukha, 5, Moscow, 105064; ur.ygoloruen@voknorov

About paper

Author contribution: Voronkov DN — immunohistochemical study, morphometric study, data analysis and interpretation, manuscript writing; Stavrovskaya AV — study planning, stereotactic surgery, data analysis and interpretation, manuscript writing and editing; Gushchina AS, Olshanskiy AS — stereotactic surgery, specimens preparation for morphological study.

Compliance with ethical standards: the study was approved by the local Ethics Committee (protocol № 2–5/19 dated February 20, 2019). The animals were manipulated in accordance with the requirements of the European Convention for the Protection of Vertebral Animals Used for Experimental and Other Scientific Purposes (CETS № 170) and the Council of the European Communities Directive 2010/63/EU, order of the Ministry of Health of the Russian Federation № 119Н “On Approval of Rules of Good Laboratory Practice” dated April 1, and GOST 33216-2014 “Rules for Working with Laboratory Rodents and Rabbits”.

Received: 2021-10-07 Accepted: 2021-10-21 Published online: 2021-10-29
|
  1. Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia. 2000; 43 (12): 1528–33.
  2. Guzyk MM, Dyakun KO, Yanytska LV, Pryvrotska IB, Krynytska IY, Pishel IM, et al. Inhibitors of Poly(ADP-Ribose)Polymerase-1 as Agents Providing Correction of Brain Dysfunctions Induced by Experimental Diabetes. Neurophysiology. 2017; 49 (3): 183–93.
  3. Knezovic A, Osmanovic-Barilar J, Curlin M, Hof PR, Simic G, Riederer P, et al. Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. Journal of Neural Transmission. 2015; 122 (4): 577–92.
  4. Osmanovic-Barilar J, Knezovic A, Grünblatt E, Riederer P, Salkovic-Petrisic, M. Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer’s disease. Journal of Neural Transmission. 2015; 122 (4): 565–76.
  5. Grieb P. Intracerebroventricular Streptozotocin Injections as a Model of Alzheimer’s Disease: in Search of a Relevant Mechanism. Molecular Neurobiology. 2016; 53 (3): 1741–52.
  6. Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. Journal of Neurochemistry. 2007; 101 (3): 757–70.
  7. Rajasekar N, Dwivedi S, Nath C, Hanif K, Shukla R. Protection of streptozotocin induced insulin receptor dysfunction, neuroinflammation and amyloidogenesis in astrocytes by insulin. Neuropharmacology. 2014; 86: 337–52.
  8. Ravelli KG, Rosário B dos A, Camarini R, Hernandes MS, Britto LR. Intracerebroventricular Streptozotocin as a Model of Alzheimer’s Disease: Neurochemical and Behavioral Characterization in Mice. Neurotoxicity Research. 2017; 31 (3): 327–33.
  9. Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2017; 1863 (5): 1078– 89.
  10. Gupta S, Yadav K, Mantri SS, Singhal NK, Ganesh S, Sandhir R. Evidence for Compromised Insulin Signaling and Neuronal Vulnerability in Experimental Model of Sporadic Alzheimer’s Disease. Molecular Neurobiology. 2018; 55 (12): 8916–35.
  11. Gorina YaV, Komleva YuK, Lopatina OL, Chernyh AI, Salmina AB. Jekspressija molekul — komponentov insulin-oposredovannoj signal'noj transdukcii v kletkah golovnogo mozga pri jeksperimental'noj bolezni Al'cgejmera. Annaly klinicheskoj i jeksperimental'noj nevrologii. 2019; 13 (4): 28–37. DOI: 10.25692/ ACEN.2019.4.5. Russian.
  12. Vercruysse P, Vieau D, Blum D, Petersen A, Dupuis L. Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Front Mol Neurosci. 2018; 11: 2. DOI: 10.3389/fnmol.2018.00002.
  13. Rizzoti K, Lovell-Badge R. Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis. Molecular and Cellular Endocrinology. 2017; 445: 7–13.
  14. Geller S, Arribat Y, Netzahualcoyotzi C, Lagarrigue S, Carneiro L, Zhang L, et al.Tanycytes Regulate Lipid Homeostasis by Sensing Free Fatty Acids and Signaling to Key Hypothalamic Neuronal Populations via FGF21 Secretion. Cell Metabolism. 2019; 30 (4): 833–44.
  15. Bolborea M, Langlet F. What is the physiological role of hypothalamic tanycytes in metabolism? American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2021; 320 (6): R994–R1003.
  16. Yoo S, Cha D, Kim S, Jiang L, Cooke P, Adebesin M, et al. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia. 2020; 68 (10): 1987–2000.
  17. Bolborea M, Pollatzek E, Benford H, Sotelo-Hitschfeld T, Dale N. Hypothalamic tanycytes generate acute hyperphagia through activation of the arcuate neuronal network. Proceedings of the National Academy of Sciences. 2020; 117 (25): 14473–81.
  18. Raikwar SP, Bhagavan SM, Ramaswamy SB, Thangavel R, Dubova I, Selvakumar GP, et al. Are Tanycytes the Missing Link Between Type 2 Diabetes and Alzheimer’s Disease? Molecular Neurobiology. 2019; 56 (2): 833–43.
  19. Ahn Y, Seo J, Park J, Won J, Yeo HG, Kim K, et al. Synaptic loss and amyloid beta alterations in the rodent hippocampus induced by streptozotocin injection into the cisterna magna. Lab Anim Res. 2020; 36: 17.
  20. Zappa Villar MF, López Hanotte J, Falomir Lockhart E, Trípodi LS, Morel GR, Reggiani PC. Intracerebroventricular streptozotocin induces impaired Barnes maze spatial memory and reduces astrocyte branching in the CA1 and CA3 hippocampal regions. J Neural Transm (Vienna). 2018; 125 (12): 1787–803. DOI: 10.1007/ s00702-018-1928-7.
  21. Agrawal R, Tyagi E, Shukla R, Nath C. Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol. 2011; 21 (3): 261–73. DOI: 10.1016/j.euroneuro.2010.11.009.
  22. González-García I, Gruber T, García-Cáceres, C. Insulin action on astrocytes: From energy homeostasis to behaviour. J Neuroendocrinol. 2021; 33 (4): e12953. DOI: 10.1111/jne.12953.
  23. Koopman ACM, Taziaux M, Bakker J. Age-related changes in the morphology of tanycytes in the human female infundibular nucleus/median eminence. J Neuroendocrinol. 2017; 29 (5). DOI: 10.1111/jne.12467.
  24. Ishii M, Iadecola C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metab. 2015; 22 (5): 761–76. DOI: 10.1016/j.cmet.2015.08.016
  25. Daimon CM, Chirdon P, Maudsley S, Martin B. The role of Thyrotropin Releasing Hormone in aging and neurodegenerative diseases. Am J Alzheimers Dis (Columbia). 2013; 1 (1). 10. DOI: 10.7726/ajad.2013.1003
  26. Rodríguez-Rodríguez A, Lazcano I, Sánchez-Jaramillo E, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P, et al. Tanycytes and the Control of Thyrotropin-Releasing Hormone Flux Into Portal Capillaries. Front Endocrinol (Lausanne). 2019; 10: 401. DOI: 10.3389/ fendo.2019.00401.
  27. García M de los A, Millán C, Balmaceda-Aguilera C, Castro T, Pastor P, Montecinos H, et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. Journal of Neurochemistry. 2003; 86 (3): 709–24.
  28. Lewis JE, Ebling FJ. Tanycytes As Regulators of Seasonal Cycles in Neuroendocrine Function. Front Neurol. 2017; 8: 79. DOI: 10.3389/fneur.2017.00079. PMID: 28344570; PMCID: PMC5344904.
  29. Uranga RM, Millán C, Barahona MJ, Recabal A, Salgado M, Martinez F, et al. Adenovirus-mediated suppression of hypothalamic glucokinase affects feeding behavior. Scientific Reports. 2017; 7 (1): 3697.
  30. Bloch K, Gil-Ad I, Vanichkin A, Hornfeld SH, Koroukhov N, Taler M, et al. Intracerebroventricular Streptozotocin Induces Obesity and Dementia in Lewis Rats. Journal of Alzheimer’s Disease. 2017; 60 (1): 121–36.
  31. Stavrovskaya AV, Voronkov DN, Shestakova EA, Gushchina AS, Olshansky AS, Yamshikova NG. Streptozocin-inducirovannaja bolezn' Al'cgejmera kak samostojatel'nyj faktor riska razvitija giperglikemii u krys linii Vistar. Problemy jendokrinologii. 2019; 65 (5): 351–61. Russian.
  32. Raza H, Prabu SK, John A, Avadhani NG. Impaired Mitochondrial Respiratory Functions and Oxidative Stress in StreptozotocinInduced Diabetic Rats. International Journal of Molecular Sciences. 2011; 12 (5): 3133–47.
  33. Correia SC, Santos RX, Santos MS, Casadesus G, LaManna JC, Perry G, et al. Mitochondrial Abnormalities in a StreptozotocinInduced Rat Model of Sporadic Alzheimer's Disease. Current Alzheimer Research. 2013; 10 (4). Available from: https://DOI.org/10.2174/1567205011310040006
  34. Poddar J, Singh S, Kumar P, Bali S, Gupta S, Chakrabarti S. Inhibition of complex I-III activity of brain mitochondria after intracerebroventricular administration of streptozotocin in rats is possibly related to loss of body weight. Heliyon. 2020; 6 (7): e04490.24.
  35. Genrikhs EE, Stelmashook EV, Golyshev SA, Aleksandrova OP, Isaev NK. Streptozotocin causes neurotoxic effect in cultured cerebellar granule neurons. Brain Research Bulletin. 2017; 130: 90–94. ht
  36. Sweeney G, Song J. The association between PGC-1α and Alzheimer’s disease. Anatomy and Cell Biology. 2016; 49 (1): 1.
  37. Rius-Pérez S, Torres-Cuevas I, Millán I, Ortega ÁL, Pérez S. PGC-1α, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. Oxidative Medicine and Cellular Longevity. 2020; 1–20.
  38. Sun P, Ortega G, Tan Y, Hua Q, Riederer PF, Deckert J, et al. Streptozotocin Impairs Proliferation and Differentiation of Adult Hippocampal Neural Stem Cells in Vitro-Correlation With Alterations in the Expression of Proteins Associated With the Insulin System. Frontiers in Aging Neuroscience. 2018; 10. Available from: https://DOI.org/10.3389/fnagi.2018.00145.
  39. Isaev NK, Genrikhs EE, Voronkov DN, Kapkaeva MR, Stelmashook EV. Streptozotocin toxicity in vitro depends on maturity of neurons. Toxicology and Applied Pharmacology. 2018; 348: 99–104.
  40. Yoo S, Kim J, Lyu P, Hoang TV, Ma A, Trinh V, et al. Control of neurogenic competence in mammalian hypothalamic tanycytes. Science Advances. 2021; 7 (22): eabg3777. Available from: https://DOI.org/10.1126/sciadv.abg3777.