ORIGINAL RESEARCH

Microglia and putative macrophages of the subfornical organ: structural and functional features

About authors

1 Institute of Experimental Medicine, St Petersburg, Russia

2 St Petersburg State University, St Petersburg, Russia

Correspondence should be addressed: Valeria V. Guselnikova
Akad. Pavlova, 12, St Petersburg, 197376, Russia; ur.xednay@aiirelav.avocinlesug

About paper

Funding: the study was supported by Russian Science Foundation, RSF Project № 22-25-00105, https://rscf.ru/project/22-25-00105/

Author contribution: Guselnikova VV — literature analysis, interpretation of the results, manuscript preparation; Razenkova VA — fluorescence immunoassay protocols development, confocal laser microscopy; Sufieva DA — histological processing, immunochemical staining, light microscopy; Korzhevskii DE — concept and planning of the study, editing of the manuscript.

Compliance with ethical standards: the study was approved by Ethical Review Board at the Institute of Experimental Medicine (Protocol № 1/22 of 18 February 2022) and carried out in full compliance with the 2013 Declaration of Helsinki.

Received: 2022-03-27 Accepted: 2022-04-18 Published online: 2022-04-28
|
  1. McKinley MJ, McAllen RM, Davern P, Giles ME, Penschow J, Sunn N, Uschakov A, Oldfield BJ. The sensory circumventricular organs of the mammalian brain. Adv Anat Embryol Cell Biol. 2003; 172: III–XII, 1–122. DOI: 10.1007/978-3-642-55532-9.
  2. Hicks A-I, Kobrinsky S, Zhou S, Yang J, Prager-Khoutorsky M. Anatomical organization of the rat subfornical organ. Front Cell Neurosci. 2021; 15: 691711. DOI: 10.3389/fncel.2021.691711.
  3. Takagi S, Furube E, Nakano Y, Morita M, Miyata S. Microglia are continuously activated in the circumventricular organs of mouse brain. J Neuroimmunol. 2019; 331: 74–86. DOI: 10.1016/j. jneuroim.2017.10.008.
  4. DosSantos MF, Devalle S, Aran V, Capra D, Roque NR, CoelhoAguiar JdM, et al. Neuromechanisms of SARS-CoV-2: A Review Front Neuroanat. 2020; 14: 37. DOI: 10.3389/fnana.2020.00037.
  5. Tremblay M-E, Madore C, Bordeleau M, Tian L, Verkhratsky A. Neuropathobiology of COVID-19: The Role for Glia. Front. Cell. Neurosci. 2020; 14: 592214. DOI: 10.3389/fncel.2020.592214.
  6. Korzhevskii DE, Sukhorukova EG, Kirik OV, Grigorev IP. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur J Histochem. 2015; 59 (3): 2530. DOI: 10.4081/ejh.2015.2530.
  7. Korzhevsky DEh, Kirik OV, Alekseeva OS. Sposob demaskirovaniya antigenov pri provedenii immunocitoximicheskix reakcij. Patent RF #2719163. 17.04.2020. Russian.
  8. Tanaka J, Hayashi Y, Shimamune S, Nomura M. Ascending pathways from the nucleus of the solitary tract to the subfornical organ in the rat. Brain Res. 1997; 777: 237–41. DOI: 10.1016/ S0006-8993(97)01211-0.
  9. Lind RW, Swanson LW, Ganten D. Angiotensin II immunoreactivity in the neural afferents and efferents of the subfornical organ of the rat. Brain Res. 1984; 321: 209–15. DOI: 10.1016/00068993(84)90174-4.
  10. Miselis RR. The subfornical organ’s neural connections and their role in water balance. Peptides. 1982; 3: 501–2. DOI: 10.1016/0196-9781(82)90115-2.
  11. Gruber K, McRae-Degueurce A, Wilkin LD, Mitchell LD, Johnson AK. Forebrain and brainstem afferents to the arcuate nucleus in the rat: potential pathways for the modulation of hypophyseal secretions. Neurosci Lett. 1987; 75: 1–5. DOI: 10.1016/0304-3940(87)90065-6.
  12. Felix D. Peptide and acetylcholine action on neurones of the cat subfornical organ. Naunyn Schmiedebergs Arch Pharmacol. 1976; 292: 15–20. DOI: 10.1007/BF00506484.
  13. Mangiapane ML, Simpson JB. Drinking and pressor responses after acetylcholine injection into subfornical organ. AJP Regul Integr Comp Physiol. 1983; 244: R508–13. DOI: 10.1152/ ajpregu.1983.244.4.
  14. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018; 18 (4): 225–42. DOI: 10.1038/nri.2017.125.
  15. Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissueresident macrophages originate from yolk-sac-derived erythromyeloid progenitors. Nature. 2015; 518: 547–51. DOI: https:// doi.org/10.1038/nature13989
  16. Hoeffel G, Chen J, Lavin Y, et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissueresident macrophages. Immunity. 2015; 42 (4): 665–78. DOI: 10.1016/j.immuni.2015.03.011.
  17. Bennett ML, Bennett FC. The influence of environment and origin on brain resident macrophages and implications for therapy. Nat Neurosci. 2020; 23: 157–166. Available from: https://doi. org/10.1038/s41593-019-0545-6
  18. Prinz M, Erny D, Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells. Nature Immunology. 2017; 18 (4): 385–92. DOI:10.1038/ni.3703
  19. Hanisch U-K. Functional diversity of microglia — how heterogeneous are they to begin with? Front Cell Neurosci. 2013; 7: 65. DOI: 10.3389/fncel.2013.00065.
  20. Alekseeva OS, Kirik OV, Gilerovich EG, Korzhevskii DE. Microglia of the brain: Origin, structure, functions. J Evol Biochem Phys. 2019; 55: 257–68. Available from: https://doi.org/10.1134/ S002209301904001X.
  21. Kirik OV, Suhorukova EG, Korzhevsky DEh. Kal'cij-svyazyvayushhij belok Iba-1/AIF-1 v kletkax golovnogo mozga krysy. Morfologiya. 2010; 137 (2): 5–8. Russian.
  22. Wijesundera KK, Izawa T, Tennakoon AH, et al. M1- and M2-macrophage polarization in rat liver cirrhosis induced by thioacetamide (TAA), focusing on Iba1 and galectin-3. Exp Mol Pathol. 2014; 96 (3): 382–92. DOI: 10.1016/j.yexmp.2014.04.003.
  23. Kolos E, Korzhevsky D. Spinal cord microglia in health and disease. Acta Naturae. 2020; 12 (1): 4–17. DOI: 10.32607/ actanaturae.10934.
  24. Korzhevsky DEh, Grigorev IP, Guselnikova VV, Kolos EA, Petrova ES, Kirik OV, i dr. Immunogistoximicheskie markery dlya nejrobiologii. Med Akad Zhurnal. 2019; 19 (4): 7–24. DOI: 10.17816/MAJ16548. Russian.
  25. Sufieva DA, Razenkova VA, Antipova MV, Korzhevskii DE. Microglia and tanycytes of the infundibular recess of the brain in early postnatal development and during aging. Russ J Dev Biol. 2020; 51: 189–96. Available from: https://doi.org/10.1134/ S106236042003008X.
  26. Morita S, Furube E, Mannari T, Okuda H, Tatsumi K, Wanaka A, et al. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res. 2016; 363: 497–511. Available from: https://doi.org/10.1007/s00441-015-2207-7.
  27. Furube E, Mannari T, Morita S, Nishikawa K, Yoshida A, Itoh M, et al. VEGF-dependent and PDGF-dependent dynamic neurovascular reconstruction in the neurohypophysis of adult mice. J Endocrinol. 2014; 222: 161–79. Available from: https://doi.org/10.1038/ mp.2017.246.
  28. Hourai A, Miyata S. Neurogenesis in the circumventricular organs of adult mouse brains. J Neurosci Res. 2013; 91: 757–70. DOI: 10.1002/jnr.23206.
  29. Furube E, Morita M, Miyata S. Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse. Cell Tissue Res. 2015; 362 (2): 347–65. DOI: 10.1007/s00441-015-2201-0.
  30. Matarredona ER, Talaverón R, Pastor AM. Interactions between neural progenitor cells and microglia in the subventricular zone: physiological implications in the neurogenic niche and after implantation in the injured brain. Front Cell Neurosci. 2018; 12: 268. DOI: 10.3389/fncel.2018.00268.
  31. Kirik OV, Suhorukova EG, Alekseeva OS, Korzhevsky DEh Subehpendimnye mikrogliocity III zheludochka golovnogo mozga. Morfologiya. 2014; 145 (2): 67–9. Russian.
  32. Amici SA, Dong J, Guerau-de-Arellano M. Molecular mechanisms modulating the phenotype of macrophages and microglia. Front Immunol. 2017; 8: 1520. DOI: 10.3389/fimmu.2017.01520.
  33. Chistiakov DA, Killingsworth MC, Myasoedova VA, Orekhov AN, Bobryshev YV. CD68/macrosialin: not just a histochemical marker. Lab Invest. 2017; 97 (1): 4–13. DOI: 10.1038/labinvest.2016.116.
  34. Jurga AM, Paleczna M, Kuter KZ. Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci. 2020; 14: 198. DOI: 10.3389/fncel.2020.00198.
  35. Kirik OV, Tsyba DL, Alekseeva OS, Kolpakova ME, Jakovleva AA, Korzhevskii DE. Alterations in Kolmer cells in SHR line rats after brain ischemia. Russian Journal of Physiology. 2021; 107 (2): 177–86. DOI: 10.31857/S0869813921010052.
  36. Korzhevskii DE, Kirik OV, Guselnikova VV, Tsyba DL, Fedorova EA, Grigorev IP. Changes in cytoplasmic and extracellular neuromelanin in human substantia nigra with normal aging. Eur J Histochem. 2021; 65 (s1): 3283. DOI: 10.4081/ejh.2021.3283.