ORIGINAL RESEARCH

Activity of nuclear factor κB in lymphocyte populations of children with psoriasis

About authors

1 National Medical Research Center for Children's Health, Moscow, Russia

2 Central State Medical Academy of the Department of Presidential Affairs of the Russian Federation, Moscow, Russia

3 Sechenov First Moscow State Medical University, Moscow, Russia

Correspondence should be addressed: Darya G. Kuptsova
Lomonosovsky prospect, 2, str. 1, Moscow, 119296; moc.liamg@avostpuk.gd

About paper

Finding: the study was part of the state assignment for the Ministry of Health of the Russian Federation, № АААА-А19-119013090093-2.

Acknowledgements: the authors wish to thank all the patients for active cooperation and express their thanks to the researchers of the Laboratory of Immunology and Virology, as well as to dermatologists and nurses at the Dermatology Department, National Medical Research Center for Children's Health, Moscow, Russia, who contributed to the study.

Author contribution: Kuptsova DG, Petrichuk SV — study concept and design, experimental data acquisition and analysis, statistical analysis, manuscript writing and editing; Kurbatova OV, Radygina TV — experimental data acquisition, manuscript editing; Murashkin NN, Khotko AA, Ivanov RA — data analysis, manuscript editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the National Medical Research Center for Children's Health (protocol № 2 dated February 14, 2020), conducted in accordance with the principles of the Declaration of Helsinki, and registered with ClinicalTrials.gov ID: NCT04989296. Parents of all children and adolescents enrolled submitted the informed consent to medical intervention in hospital settings, personal data processing and the use of data for scientific purposes.

Received: 2022-02-11 Accepted: 2022-03-03 Published online: 2022-03-20
|
  1. Gisondi P, Bellinato F, Girolomoni G, Albanesi C. Pathogenesis of Chronic Plaque Psoriasis and Its Intersection With CardioMetabolic Comorbidities. Front Pharmacol. 2020; 11: 117. DOI: 10.3389/fphar.2020.00117.
  2. Hugh JM, Weinberg JM. Update on the pathophysiology of psoriasis. Cutis. 2018; 102 (5S): 6–12.
  3. Smirnova SV, Smolnikova MV. Immune Pathogenesis of Psoriasis and Psoriatic Arthritis. Medical Immunology (Russia). 2014; 16 (2): 127–138. (In Russ.) https://doi.org/10.15789/15630625-2014-2-127-138.
  4. Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol. 2017; 140 (3): 645–53. DOI: 10.1016/j. jaci.2017.07.004.
  5. Relvas M, Torres T. Pediatric Psoriasis. Am J Clin Dermatol. 2017; 18 (6): 797–811. DOI: 10.1007/s40257-017-0294-9.
  6. Tangtatco JAA, Lara-Corrales I. Update in the management of pediatric psoriasis. Curr Opin Pediatr. 2017; 29 (4): 434–42. DOI: 10.1097/MOP.0000000000000517.
  7. Deng Y, Chang C, Lu Q. The Inflammatory Response in Psoriasis: a Comprehensive Review. Clin Rev Allergy Immunol. 2016; 50 (3): 377–89. DOI: 10.1007/s12016-016-8535-x.
  8. Georgescu SR, Tampa M, Caruntu C, Sarbu MI, Mitran CI, Mitran MI, et al. Advances in Understanding the Immunological Pathways in Psoriasis. Int J Mol Sci. 2019; 20 (3): 739. DOI: 10.3390/ijms20030739.
  9. Chiricozzi A, Romanelli P, Volpe E, Borsellino G, Romanelli M. Scanning the Immunopathogenesis of Psoriasis. Int J Mol Sci. 2018; 19 (1): 179. DOI: 10.3390/ijms19010179.
  10. Frischknecht L, Vecellio M, Selmi C. The role of epigenetics and immunological imbalance in the etiopathogenesis of psoriasis and psoriatic arthritis. Ther AdvMusculoskelet Dis. 2019; 11: 1759720X19886505. DOI: 10.1177/1759720X19886505.
  11. Diani M, Altomare G, Reali E. T Helper Cell Subsets in Clinical Manifestations of Psoriasis. J Immunol Res. 2016; 2016: 7692024. DOI: 10.1155/2016/7692024.
  12. Solberg SM, Aarebrot AK, Sarkar I, Petrovic A, Sandvik LF, Bergum B, et al. Mass cytometry analysis of blood immune cells from psoriasis patients on biological therapy. Eur J Immunol. 2020. DOI: 10.1002/eji.202048857.
  13. Kuptsova D, Radygina T, Murashkin N, Petrichuk SV. Indicators of cellular immunity and suppressor cells of myeloid origin in children with psoriasis. J Immunopathology, allergology, infectology. 2020; 3: 55–65. doi: 10.14427/jipai.2020.3.55.
  14. Uttarkar S, Brembilla NC, Boehncke WH. Regulatory cells in the skin: Pathophysiologic role and potential targets for antiinflammatory therapies. J Allergy Clin Immunol. 2019; 143 (4): 1302–10. DOI: 10.1016/j.jaci.2018.12.1011.
  15. Zhang L, Li Y, Yang X, Wei J, Zhou S, Zhao Z, et al. Characterization of Th17 and FoxP3(+) Treg Cells in PaediatricPsoriasis Patients. Scand J Immunol. 2016; 83 (3): 174–80. DOI: 10.1111/sji.12404.
  16. Lizzul PF, Aphale A, Malaviya R, Sun Y, Masud S, Dombrovskiy V, et al. Differential expression of phosphorylated NF-kappaB/RelA in normal and psoriatic epidermis and downregulation of NF-kappaB in response to treatment with etanercept. J Invest Dermatol. 2005; 124 (6): 1275–83. DOI: 10.1111/j.0022-202X.2005.23735.x.
  17. Woo YR, Cho DH, Park HJ. Molecular Mechanisms and Management of a Cutaneous Inflammatory Disorder: Psoriasis. Int J Mol Sci. 2017; 18 (12): 2684. DOI: 10.3390/ijms18122684.
  18. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring HarbPerspect Biol. 2009; 1 (6): a001651. DOI: 10.1101/cshperspect.a001651.
  19. Sun SC, Chang JH, Jin J. Regulation of nuclear factor-κB in autoimmunity. Trends Immunol. 2013; 34 (6): 282–9. DOI: 10.1016/j.it.2013.01.004.
  20. George TC, Fanning SL, Fitzgerald-Bocarsly P, Medeiros RB, Highfill S, Shimizu Y, et al. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J Immunol Methods. 2006; 311 (1–2): 117–29. DOI: 10.1016/j.jim.2006.01.018.
  21. Barteneva NS, Vorobjev IA. Imaging Flow Cytometry Methods and protocols. Methods Mol Biol. 2017; 178–88.
  22. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000; 18: 621–63. DOI: 10.1146/annurev.immunol.18.1.621.
  23. Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NFkappaB-inducing kinase by tumor necrosis factor receptorassociated factor 3-induced degradation. J Biol Chem. 2004; 279 (25): 26243–50. DOI: 10.1074/jbc.M403286200.
  24. Bhatt D, Ghosh S. Regulation of the NF-κB-Mediated Transcription of Inflammatory Genes. Front Immunol. 2014; 5: 71. DOI: 10.3389/fimmu.2014.00071.
  25. Moorchung N, Kulaar JS, Chatterjee M, Vasudevan B, Tripathi T, Dutta V. Role of NF-κB in the pathogenesis of psoriasis elucidated by its staining in skin biopsy specimens. Int J Dermatol. 2014; 53 (5): 570–4. DOI: 10.1111/ijd.12050.
  26. Goldminz AM, Au SC, Kim N, Gottlieb AB, Lizzul PF. NF-κB: an essential transcription factor in psoriasis. J Dermatol Sci. 2013; 69 (2): 89–94. DOI: 10.1016/j.jdermsci.2012.11.002.
  27. Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol. 2021; 184 (1): 14–24. DOI: 10.1111/bjd.19380.
  28. Luan L, Han S, Wang H, Liu X. Down-regulation of the Th1, Th17, and Th22 pathways due to anti-TNF-α treatment in psoriasis. IntImmunopharmacol. 2015; 29 (2): 278–84. DOI: 10.1016/j. intimp.2015.11.005.
  29. Johansen C, Riis JL, Gedebjerg A, Kragballe K, Iversen L. Tumor necrosis factor α-mediated induction of interleukin 17C in human keratinocytes is controlled by nuclear factor κB. J Biol Chem. 2011; 286 (29): 25487–94. DOI: 10.1074/jbc.M111.240671.
  30. Andres-Ejarque R, Ale HB, Grys K, et al. Enhanced NF-κB signaling in type-2 dendritic cells at baseline predicts non-response to adalimumab in psoriasis. Nat Commun. 2021; 1: 4741. Available from: https://doi.org/10.1038/s41467-021-25066-9.