Copyright: © 2022 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Models of mitochondrial dysfunction with inducible expression of Polg pathogenic mutant variant

About authors

1 Institute of Gene Biology, Moscow, Russia

2 Blokhin Russian Cancer Research Center, Moscow, Russia

Correspondence should be addressed: Marina V. Kubekina
Beskudnikovsky bulvar, 32, korpus 1, Moscow, 127474, Russia; moc.liamg@ymukyram

About paper

Funding: the study was supported by Russian Foundation for Basic Research, RFBR Project № 19-34-90073.

Author contribution: Kubekina MV — literature analysis, experimental research, data analysis and interpretation, oligo design, manuscript writing; Kalinina AA, Korshunova DS — experimental research; Bruter AV — literature analysis, research planning, data analysis and interpretation; Silaeva YY — literature analysis, research planning, data analysis and interpretation, scientific editing of the manuscript.

Compliance with ethical standards: the study was approved by Ethical Review board at the Institute of Gene Biology (Protocol of 05 December 2021) and carried out in strict compliance with the Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes.

Received: 2022-04-14 Accepted: 2022-04-28 Published online: 2022-04-27
|
  1. Davis RL, Liang C, Sue CM. Mitochondrial diseases. Handb Clin Neurol. 2018; 147: 125–41. doi: 10.1016/B978-0-444-632333.00010-5.
  2. Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017 Jan; 241 (2): 236–50. DOI: 10.1002/path.4809.
  3. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004 May 27; 429 (6990): 417–23. DOI: 10.1038/nature02517.
  4. Kukat A, Trifunovic A. Somatic mtDNA mutations and aging--facts and fancies. Exp Gerontol. 2009; 44 (1–2): 101–5. DOI: 10.1016/j. exger.2008.05.006.
  5. McCormick EM, Muraresku CC, Falk MJ. Mitochondrial Genomics: A complex field now coming of age. Curr Genet Med Rep. 2018 Jun; 6 (2): 52–61. DOI: 10.1007/s40142-018-0137-x.
  6. Dombi E, Mortiboys H, Poulton J. Modulating Mitophagy in Mitochondrial Disease. Curr Med Chem. 2018; 25 (40): 5597– 612. DOI: 10.2174/0929867324666170616101741.
  7. Diot A, Morten K, Poulton J. Mitophagy plays a central role in mitochondrial ageing. Mamm Genome. 2016 Aug; 27 (7–8): 381–95. DOI: 10.1007/s00335-016-9651-x.
  8. Kubekina MV, Silaeva YYu, Bruter AV, Korshunova DS, Ilchuk LA, Okulova YD, et al. Transgenic mice Cre-dependently expressing mutant polymerase-gamma: novel test-system for pharmacological study of mitoprotective drugs. Research Results in Pharmacology. 2021; 7 (3): 33–39. DOI: 10.3897/ rrpharmacology.7.72784.
  9. Tan YS, Lei YL. Generation and Culture of Mouse Embryonic Fibroblasts. Methods Mol Biol. 2019; 1960: 85–91. DOI: 10.1007/978-1-4939-9167-9_7.
  10. Giorgi C, Bouhamida E, Danese A, Previati M, Pinton P, Patergnani S. Relevance of Autophagy and Mitophagy Dynamics and Markers in Neurodegenerative Diseases. Biomedicines. 2021 Feb 4; 9 (2): 149. DOI: 10.3390/biomedicines9020149.
  11. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013 Aug; 3 (3): 71–85.
  12. The use of hanging wire tests to monitor muscle strength and condition over time: Treat-nmd neuromuscular network. Available from: https://treat-nmd.org/wp-content/uploads/2016/08/dmdDMD_M.2.1.004.pdf.
  13. Use of grip strength meter to assess the limb strength of mdx mice: Treat-nmd neuromuscular network. Available from: https://treat-nmd.org/wp-content/uploads/2016/08/MDX-DMD_M.2.2.001-42.pdf.
  14. Kalinina AA, Khromykhx LM, Kazansky DB, Dejkin AV, Silaeva YuYu. Adoptivnyj perenos singennyx splenocitov podavlyaet immunnyj otvet subletal'no obluchennyx myshej. Acta Naturae. 2021; 13 (1): 116–26. Russian.
  15. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA. 2010; 107 (1): 378–83. DOI: 10.1073/pnas.0911187107.
  16. Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol. 2007; 27 (17): 6229–42. DOI: 10.1128/ MCB.02246-06.
  17. Killackey SA, Philpott DJ, Girardin SE. Mitophagy pathways in health and disease. J Cell Biol. 2020; 219 (11): e202004029. DOI: 10.1083/jcb.202004029.
  18. Eskelinen EL, Illert AL, Tanaka Y, Schwarzmann G, Blanz J, Von Figura K, et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell. 2002; 13 (9): 3355–68. DOI: 10.1091/ mbc.e02-02-0114.
  19. López-Lluch G. Essential role of mitochondrial dynamics in muscle physiology. Acta Physiol (Oxf). 2017; 219 (1): 20–21. DOI: 10.1111/apha.12750.
  20. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015; 42 (3): 406–17. DOI: 10.1016/j.immuni.2015.02.002.