ORIGINAL RESEARCH

Models of mitochondrial dysfunction with inducible expression of Polg pathogenic mutant variant

Kubekina MV1, Kalinina AA2, Korshunova DS1, Bruter AV1, Silaeva YY1
About authors

1 Institute of Gene Biology, Moscow, Russia

2 Blokhin Russian Cancer Research Center, Moscow, Russia

Correspondence should be addressed: Marina V. Kubekina
Beskudnikovsky bulvar, 32, korpus 1, Moscow, 127474, Russia; moc.liamg@ymukyram

About paper

Funding: the study was supported by Russian Foundation for Basic Research, RFBR Project № 19-34-90073.

Author contribution: Kubekina MV — literature analysis, experimental research, data analysis and interpretation, oligo design, manuscript writing; Kalinina AA, Korshunova DS — experimental research; Bruter AV — literature analysis, research planning, data analysis and interpretation; Silaeva YY — literature analysis, research planning, data analysis and interpretation, scientific editing of the manuscript.

Compliance with ethical standards: the study was approved by Ethical Review board at the Institute of Gene Biology (Protocol of 05 December 2021) and carried out in strict compliance with the Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes.

Received: 2022-04-14 Accepted: 2022-04-28 Published online: 2022-04-27
|
  1. Davis RL, Liang C, Sue CM. Mitochondrial diseases. Handb Clin Neurol. 2018; 147: 125–41. doi: 10.1016/B978-0-444-632333.00010-5.
  2. Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017 Jan; 241 (2): 236–50. DOI: 10.1002/path.4809.
  3. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004 May 27; 429 (6990): 417–23. DOI: 10.1038/nature02517.
  4. Kukat A, Trifunovic A. Somatic mtDNA mutations and aging--facts and fancies. Exp Gerontol. 2009; 44 (1–2): 101–5. DOI: 10.1016/j. exger.2008.05.006.
  5. McCormick EM, Muraresku CC, Falk MJ. Mitochondrial Genomics: A complex field now coming of age. Curr Genet Med Rep. 2018 Jun; 6 (2): 52–61. DOI: 10.1007/s40142-018-0137-x.
  6. Dombi E, Mortiboys H, Poulton J. Modulating Mitophagy in Mitochondrial Disease. Curr Med Chem. 2018; 25 (40): 5597– 612. DOI: 10.2174/0929867324666170616101741.
  7. Diot A, Morten K, Poulton J. Mitophagy plays a central role in mitochondrial ageing. Mamm Genome. 2016 Aug; 27 (7–8): 381–95. DOI: 10.1007/s00335-016-9651-x.
  8. Kubekina MV, Silaeva YYu, Bruter AV, Korshunova DS, Ilchuk LA, Okulova YD, et al. Transgenic mice Cre-dependently expressing mutant polymerase-gamma: novel test-system for pharmacological study of mitoprotective drugs. Research Results in Pharmacology. 2021; 7 (3): 33–39. DOI: 10.3897/ rrpharmacology.7.72784.
  9. Tan YS, Lei YL. Generation and Culture of Mouse Embryonic Fibroblasts. Methods Mol Biol. 2019; 1960: 85–91. DOI: 10.1007/978-1-4939-9167-9_7.
  10. Giorgi C, Bouhamida E, Danese A, Previati M, Pinton P, Patergnani S. Relevance of Autophagy and Mitophagy Dynamics and Markers in Neurodegenerative Diseases. Biomedicines. 2021 Feb 4; 9 (2): 149. DOI: 10.3390/biomedicines9020149.
  11. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013 Aug; 3 (3): 71–85.
  12. The use of hanging wire tests to monitor muscle strength and condition over time: Treat-nmd neuromuscular network. Available from: https://treat-nmd.org/wp-content/uploads/2016/08/dmdDMD_M.2.1.004.pdf.
  13. Use of grip strength meter to assess the limb strength of mdx mice: Treat-nmd neuromuscular network. Available from: https://treat-nmd.org/wp-content/uploads/2016/08/MDX-DMD_M.2.2.001-42.pdf.
  14. Kalinina AA, Khromykhx LM, Kazansky DB, Dejkin AV, Silaeva YuYu. Adoptivnyj perenos singennyx splenocitov podavlyaet immunnyj otvet subletal'no obluchennyx myshej. Acta Naturae. 2021; 13 (1): 116–26. Russian.
  15. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA. 2010; 107 (1): 378–83. DOI: 10.1073/pnas.0911187107.
  16. Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol. 2007; 27 (17): 6229–42. DOI: 10.1128/ MCB.02246-06.
  17. Killackey SA, Philpott DJ, Girardin SE. Mitophagy pathways in health and disease. J Cell Biol. 2020; 219 (11): e202004029. DOI: 10.1083/jcb.202004029.
  18. Eskelinen EL, Illert AL, Tanaka Y, Schwarzmann G, Blanz J, Von Figura K, et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell. 2002; 13 (9): 3355–68. DOI: 10.1091/ mbc.e02-02-0114.
  19. López-Lluch G. Essential role of mitochondrial dynamics in muscle physiology. Acta Physiol (Oxf). 2017; 219 (1): 20–21. DOI: 10.1111/apha.12750.
  20. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015; 42 (3): 406–17. DOI: 10.1016/j.immuni.2015.02.002.