ORIGINAL RESEARCH

Alleviation of neurological and cognitive impairments in rat model of ischemic stroke by 0.5 MAC xenon exposure

Krukov IA1, Ershov AV2,3, Cherpakov RA2,4, Grebenchikov OA2
About authors

1 Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia

2 Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia

3 Sechenov First Moscow State Medical University, Moscow, Russia

4 Sklifosovsky Institute for Emergency Medicine, Moscow, Russia

Correspondence should be addressed: Rostislav A. Cherpakov
B. Cherkizovskaya, 6, korp. 6, k. 36, Moscow, 107061, Russia

About paper

Funding: the study was funded by the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology state budgetary institution of science as a part of research project "Anesthetic neuroprotection with xenon and sevoflurane in severe brain damage. Clinical and experimental study" (No. 0427-2019-0035).

Author contribution: Krukov IA — study design, concept development and research algorithm establishment; Ershov AV — experimental part, statistical analysis of the data; Cherpakov RA — manuscript writing and editing; Grebenchikov OA — scientific editing of the final version.

Compliance with ethical standards: the study was approved by Ethical Review Board at the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology (Protocol № 4/21/2 of 29 September 2021) and conducted in compliance with the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS № 123, Strasbourg 18/03/1986, with the Appendix of 2006), Guide for the Care and Use of Laboratory Animals, 8th ed. (2010), Directive 2010/63/EU of the European Parliament and the Council on the Protection of Animals Used for Scientific Purposes (2010) and the Good Laboratory Practice Guidelines (2016).

Received: 2022-05-21 Accepted: 2022-06-12 Published online: 2022-06-24
|
  1. Bеjot Y, Bailly H, Durier J, Giroud M. Epidemiology of stroke in Europe and trends for the 21st century. Presse Medicale. 2016; 45 (12): 391–8. DOI: 10.1016/j.lpm.2016.10.003.
  2. Preobrazhenskaya IS. Kognitivnye narusheniya posle insul'ta: rasprostranennost', prichiny i podxody k terapii. Ehffektivnaya farmakoterapiya. 2013; 45: 50–57. Russian.
  3. Parfenov VA, Verbickaya SV. Postinsul'tnye kognitivnye narusheniya. Medicinskij sovet. 2018; 18: 11–15. DOI: 10.21518/2079-701X2018-18-10-15. Russian.
  4. Piradov MA, Krylov VV, Belkin AA, Petrikov SS. Insulty. V knige: Gelfand BR, Zabolotskij IB, redaktory. Intensivnaya terapiya. Nacional'noe rukovodstvo. 2-e izd., Moskva: GEhO-TAR-Media, 2017; c. 288–309. Russian.
  5. Shevchenko EV, Ramazanov GR, Petrikov SS. Prichiny golovokruzheniya u bol'nyx s podozreniem na ostroe narushenie mozgovogo krovoobrashheniya. Zhurnal im. N. V. Sklifosovskogo «Neotlozhnaya medicinskaya pomoshh'». 2018; 7 (3): 217–21. Russian.
  6. Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015;169 (4): 397–403. DOI: 10.1001/jamapediatrics.2014.3269. PMID: 25685948.
  7. Wong TP, Howland JG, Wang YT. NMDA Receptors and Disease+C464. Encyclopedia of Neuroscience. 2009: 1177–82. DOI: 10.1016/b978-008045046-9.01223-7.
  8. Bubeev YuA, Kotrovskaya TI, Kalmanov AS. Ksenon-kislorodnaya gazovaya ingalyaciya dlya korrekcii negativnyx posledstvij stressa. V sb.: Ksenon i inertnye gazy v medicine: Materialy konferencii anesteziologov-reanimatologov medicinskix uchrezhdenij MO RF. M.: GVKG im. N. N. Burdenko, 2008; c. 4–9. Russian.
  9. Goto T. Xenon anesthesia — results from human studies. Applied Cardiopulmonary Pathophysiology. 2000; 9: 129–31. Available from: https://academic.naver.com/article.naver?doc_ id=194615041.
  10. Gerasimova YuYu, Ermakova MA. Nejroprotektivnye ehffekty subnarkoticheskix i narkoticheskix koncentracij medicinskogo ksenona. Vestnik soveta molodyx uchenyx i specialistov chelyabinskoj oblasti. 2017; 3 (18). Dostupno po ssylke: https:// www.elibrary.ru/download/elibrary_30672509_99990060.pdf. Russian.
  11. Burov NE, Makeev GN, Potapov VN. Applying xenon technologies in Russia. Applied Cardiopulmonary Pathophysiology. 2000; 9: 132–3. Available from: https://www.researchgate.net/ publication/297793098_Applying_xenon_technologies_in_ Russian.
  12. de Sousa SL, Dickinson R, Lieb WR, Franks NP. Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology. 2000; 92 (4): 1055–66. DOI: 10.1097/00000542-200004000-00024. PMID: 10754626.
  13. Kuzovlev AN, Shpichko AI, Ryzhkov IA, Grebenchikov OA, Shabanov AK, Xusainov ShZh, Cokolaeva ZI, Lobanov AV. Vliyanie ksenona na fosforilirovanie kinazy glikogensintazy3ẞ i antioksidantnye fermenty v mozge krys. Zhurnal im. N. V. Sklifosovskogo «Neotlozhnaya medicinskaya pomoshh'». 2020; 9 (4): 564–572. DOI: 10.23934/2223-9022-2020-9-4-564-572. Russan.
  14. Grebenchikov OA, Molchanov IV, Shpichko AI, Evseev AK, Shabanov AK, Xusainov ShZh, Petrikov SS. Nejroprotektivnye svojstva ksenona po dannym ehksperimental'nyx issledovanij. Zhurnal im. N. V. Sklifosovskogo «Neotlozhnaya medicinskaya pomoshh'». 2020; 9 (1): 85–95. DOI: 10.23934/2223-9022-2020-9-1-85-95. Russan.
  15. Zhang J, Liu W, Bi M, Xu J, Yang H, Zhang Y. Noble gases therapy in cardiocerebrovascular diseases: the novel stars? Front Cardiovasc Med. 2022; 9: 802783. DOI: 10.3389/fcvm.2022.802783.
  16. Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic–Ischaemic and InfectionSensitised Hypoxic–Ischaemic Brain Damage. Front Synaptic Neurosci. 2021; 13: 709301. DOI: 10.3389/fnsyn.2021.709301.
  17. Zhao С-S, Li H, Wan Z, Chen G. Potential application value of xenon in stroke treatment. Med Gas Res. 2018; 8 (3): 116–20. DOI: 10.4103/ 2045-9912.241077.
  18. Roehl A, Rolf R, Mark C. Update of the organoprotective properties of xenon and argon: from bench to beside. ICMx. 2020; 11. DOI: 10.1186/s40635-020-0294-6.
  19. Koziakova M, Harris K, Edge CJ, Franks NP, White IL, Dickinson R. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesth. 2019; 123 (5): 601–9. DOI: 10.1016/j. bja.2019.07.010.
  20. Maze, M, Laitio T. Neuroprotective Properties of Xenon. Mol Neurobiol. 2020; 57: 118–24. DOI: 10.1007/s12035-01901761-z.
  21. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20 (1): 84–91. DOI: 10.1161/01.str.20.1.84.
  22. Silachyov DN, Shubina MI, Yankauskas SS, Mkrtchyan VP, Manskix VN, Gulyaev MV, Zorov DB. Ocenka sensomotornogo deficita v otdalennom periode posle ishemii/gipoksii golovnogo mozga neonatal'nyx krys. Zhurnal vysshej nervnoj deyatel'nosti. 2013; 63 (3): 405–16. DOI: 10.7868/S0044467713030131. Russian.
  23. Iptyshev AM, Gorina YaV, Lopatina OL, Komleva YuK, Chernyx AI, Belova OA, et al. Sravnenie testov «Vos'mirukavnyj radial'nyj labirint» i «Vodnyj labirint Morrisa» pri ocenke prostranstvennoj pamyati u ehksperimental'nyx zhivotnyx v xode nejropovedencheskogo testirovaniya. Fundamental'naya i klinicheskaya medicina. 2017; 2 (2): 62–69. DOI: 10.23946/2500-0764-2017-2-2-62-69. Russian. 2017; 2 (2): 62–69. DOI: 10.23946/2500-0764-2017-2-2-62-69.
  24. Notova SV, Kazakova TV, Marshinskaya OV. Sovremennye metody i oborudovanie dlya ocenki povedeniya laboratornyx zhivotnyx. Zhivotnovodstvo i kormoproizvodstvo. 2018; 101 (1): 106–15. Russian.
  25. Mahon S, Parmar P, Barker-Collo S. Determinants, prevalence, and trajectory of long-term post-stroke cognitive impairment. Results from a 4-year follow-up of the ARCOSIV study. Neuroepidemiology. 2017; 49 (3–4): 129–34. DOI: 10.1159/000484606 PMID: 29145207.
  26. Vasilev SV, Vladimirov SA. Vozmozhnosti klinicheskogo ispol'zovaniya subnarkoticheskix doz ksenona. Journal of Siberian Medical Sciences. 2012; 6. Dostupno po ssylke: https: //docplayer. com/68328413-Vozmozhnosti-klinicheskogo-ispolzovaniyasubnarkoticheskih-doz-ksenona.html. Russan.
  27. Igoshina TV. Korrekciya svyazannyx so stressom nevroticheskix rasstrojstv metodom ingalyacii subnarkoticheskix doz ksenona v usloviyax sanatoriya. Kremlevskaya medicina. 2013; 4: 37–42. http:// kremlin-medicine.ru/index.php/km/article/view/10/9. Russian.
  28. Bogomolov IS, Pavlova RA, Fedorov SS, Xabibulin RF. Vliyanie ksenona na kognitivnuyu sferu terapevticheskix pacientov s soputstvuyushhej ehncefalopatiej razlichnogo geneza. Materialy tret'ej konferencii. 2012; s. 107–12. Russian.
  29. Kornetov NA, Shpisman MN, Naumov SA. Primenenie lechebnogo ksenonovogo narkoza v kompleksnoj terapii abstinentnogo sindroma pri opiatnoj narkomanii. M.: Medicina, 2001. Russan.
  30. Perov AYu, Ovchinnikov BM. Vnedrenie v shirokuyu medicinskuyu praktiku texnologii lecheniya smesyami blagorodnyx gazov s kislorodom. Birzha intellektual'noj sobstvennosti. 2010; 9 (5): 35–36. Russian.
  31. Davletov LA. Primenenie ksenona v kompleksnoj terapii psixicheskix i somatonevrologicheskix rasstrojstv v strukture ostroj ehncefalopatii u pacientov s zavisimost'yu ot psixoaktivnyx veshhestv: dissertaciya na zvanie kand. med. nauk. Moskva, 2007: 27. Russian.
  32. Dandekar MP, Yin X, Peng T, Devaraj S, Morales R, McPherson D, et al. Repetitive xenon treatment improves post-stroke sensorimotor and neuropsychiatric dysfunction Journal of Affective Disorders 2022; 301: 315–30. DOI: 10.1016/j.jad.2022.01.025.
  33. Campos-Pires R, Hirnet T, Valeo F, Ong BE, Radyushkin K, Aldhoun J, et al. Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice. Br J Anaesth. 2019; 123 (1): 60–73. DOI: 10.1016/j.bja.2019.02.032.
  34. Campos-Pires R, Ongradito H, Ujvari E, Karimi S, Valeo F, Aldhoun J, et al. Xenon treatment after severe traumatic brain injury improves locomotor outcome, reduces acute neuronal loss and enhances early beneficial neuroinflammation: a randomized, blinded, controlled animal study. Crit Care. 2020; 24 (1): 667. DOI: 10.1186/ s13054-020-03373-9.
  35. Fries M, Nolte KW, Coburn M, Rex S, Timper A, Kottmann K, et al. Xenon reduces neurohistopathological damage and improves the early neurological deficit after cardiac arrest in pigs. Crit Care Med. 2008; 36: 2420–6. DOI: 10.1097 /CCM.0b013e3181802874.
  36. Homi HM, Yokoo N, Ma D, Warner DS, Franks NP, Maze M, et al. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology. 2003; 99 (4): 876–81. DOI: 10.1097/00000542-200310000-00020.