ORIGINAL RESEARCH

In silico algorithm for optimization of pharmacokinetic studies of [25Mg2+]porphyrin-fullerene nanoparticles

Fursov VV1,2, Zinchenko DI1, Namestnikova DD2, Kuznetsov DA2,3
About authors

1 Mendeleev University of Chemical Technology, Moscow, Russia

2 Pirogov Russian National Research Medical University, Moscow, Russia

3 Semenov Federal Research Center for Chemical Physics, Moscow, Russia

Correspondence should be addressed: Valentin V. Fursov
Ostrovityanova, 1, Moscow, 117997, Russia; ur.liam@vosrufv

About paper

Funding: the study was funded by by the Ministry of Science and Higher Education of the Russian Federation, grant No. 075-15-2020-792 (Unique identifier RF-190220X0031)

Author contribution: Fursov VV — in silico study supervision, concept, hypothesis, structure, modeling, manuscript writing; Zinchenko DI — modeling, code, manuscript writing; Namestnikova DD — in vivo experiments; Kuznetsov DA — general supervision, data interpretation and analysis, planning of experiments.

Compliance with ethical standards: the study was approved by the ethical review board at the Pirogov Russian National Research Medical University (protocol № 140 of 15 December 2014) and the local committee for surveillance of the maintenance and use of laboratory animals (protocol № 13/2020 of 08 October 2020, protocol № 24/2021 of 10 December 2021).

Received: 2022-07-05 Accepted: 2022-07-18 Published online: 2022-07-22
|
  1. Global health estimates: Leading causes of death. World Health Organization. Available from (дата обращения: 25.05.22): https:// www.who.int/data/gho/data/themes/mortality-and-global-healthestimates/ghe-leading-causes-of-death.
  2. Li G, Liu Y, He R, et al. FDA decisions on new oncological drugs. Lancet Oncology. 2022; 23 (5): 583–5.
  3. Benjamin DJ, Prasad V, Lythgoe MP. FDA decisions on new oncological drugs. Lancet Oncology. 2022; 23 (5): 585–6.
  4. Das M. Biden’s proposed investment in cancer research sparks concerns. Lancet Oncology. 2022; 23 (5): 576–80.
  5. Jun Z. SCO, a unique regional project. St. Petersburg State Polytechnical University Journal. 2016; 239 (1): 98–101.
  6. Vasiliev AA, Spaper D, Ibragimov ZI. Ways to step up the international scientific and technological cooperation of the SCO countries. Russian Asian Law Journal. 2020; 13 (2): 92–6.
  7. Kazemzadeh H, Mozafari M. Fullerene – based delivery systems. Drug Discovery Today. 2019; 24 (3): 898–05.
  8. Kuznetsov D, Roumiantsev S, Fallahi M, et al. Non-Markovian population dynamics: does it help to optimize the chemotherapeutic strategy? International Journal of Biomedical Science. 2010; 6 (1): 20–6.
  9. Bukhvostov AA, Dvornikov AS, Ermakov KV, Kuznetsov DA. Critical Study of Retinoblastoma Case: Shall We Get a Paramagnetic Trend in Chemotherapy? (2020) In: Quershi NA, editor. Current Topics in Medicine and Medical Research. Science Domain Publ., Ltd: Hoogley – London – New York, 2020; 1: 72–78.
  10. Orlova MA, Osipova EY, Roumiantsev SA. Effect of 67Znnanoparticles in leukemic and normal lymphocytes. British Journal of Medicine and Medical Research. 2012; 2 (1): 21–30.
  11. Buchachenko AL, Bukhvostov AA, Ermakov KV, et al. A specific role of magnetic isotopes. Physics and biophysics beyond. Progress in Biophysics and Molecular Biology. 2020; 155 (1): 1–20.
  12. Fursov IV, Zinchenko DI, Fursov VV, Ananishnev VM. Tekhnologii iskusstvennogo intellekta v zdravookhranenii. Sozdanie In Silico — algoritmov dlya optimizatsii v eksperimental'noy nanofarmakologii ishemicheskogo insul'ta. Sbornik rabot prepodavateley, aspirantov i studentov. M.: Pero, 2022; s. 30–33. Russian.
  13. Johansen RJ, Bukhvostov AA, Ermakov KV, Kuznetsov DA. Towards a computational prediction for the tumor selective accumulation of paramagnetic nanoparticles in retinoblastoma cells. Bulletin of Russian State Medical University. 2018; 6: 68–73. DOI: 10.24075/brsmu.2018.078. – EDN YZGOXB.
  14. Kurkina ES. Modelirovanie nelineynykh yavleniy v fiziko-khimicheskikh sistemakh: Avtokolebaniya. Struktury. Volny. S podrobnymi primerami v MATLAB. M.: LENAND, 2019; 248 s. Russian.
  15. Gubsky IL, Namestnikova DD, Cherkashova EA, Chekhonin VP, Baklaushev VP, Gubsky LV, Yarygin KN. MRI guiding of the middle cerebral artery occlusion in rats aimed to improve stroke modeling. Translational Stroke Research. 2018; 9: 417–25.
  16. Sarkar S, et al. Use of a magnesium isotope for treating hypoxia and a medicament comprising the same: заяв. пат. 12123245 США, 2008.
  17. Fursov VV, Ananev AV, Ananev VN. Komp'yuternaya matematicheskaya model' patofiziologicheskikh izmeneniy uchastka mozgovoy tkani pri razvitii insul'ta. Estestvennye i tekhnicheskie nauki. 2022; 5 (168): 173–7. Russian.
  18. Fursov VV, et al. In silico studies on pharmacokinetics and neuroprotective potential of 25Mg2+: releasing nanocationites — background and perspectives. Pharmacogenetics. 2021; p. 155.
  19. Amirshakhi N, i dr. Porfirin-fullerenovye nanochastitsy dlya lecheniya gipoksicheskikh kardiopatiy. Rossiyskie nanotekhnologii. 2008; 3 (9–10): 125–35. Russian.
  20. Sarkar S, Rezayat SM, Buchachenko AL, Kuznetsov DA, Orlova MA, Yurovskaya MA, Trushkov IV. (2007) Novye vodorastvorimye porfillerenovye soedineniya. Patent Evropeyskogo soyuza № 07009882.7/EP07009882 (reg.: Myunkhen, Germaniya). Russian.
  21. Sarkar S, Rezayat SM, Buchachenko AL, Kuznetsov DA, Orlova MA, Yurovskaya MA, Trushkov IV. (2007) Ispol'zovanie izotopa magniya dlya lecheniya gipoksii i lekarstvennogo sredstva, soderzhashchego ego. Patent Evropeyskogo soyuza № 07009881.9/EP07009881 (reg.: Myunkhen, Germaniya). Russian.