ORIGINAL RESEARCH

Systemic inflammation markers of diet-induced metabolic syndrome in rat model

Birulina JG, Voronkova OV, Ivanov VV, Buyko EE, Shcherbakova MM, Chernyshov NA, Motlokhova EA
About authors

Siberian State Medical University, Tomsk, Russia

Correspondence should be addressed: Julia G. Birulina
Moskovsky Trakt, 2, str. 7, Tomsk, 634050, Russia; ur.xednay@02anilurib

About paper

Funding: the study was supported by the Russian Science Foundation, Grant № 22-25-20039, https://rscf.ru/project/22-25-20039/ and funds of the Tomsk Region Administration.

Author contribution: Birulina JG, Voronkova OV — concept and design, manuscript writing; Ivanov VV, Buyko EE — metabolic syndrome modeling, biochemical blood tests; Shcherbakova MM — blood cytokine assay; Chernyshov NA — literature analysis, hemogram tests; Motlokhova EA — statistical analysis.

Compliance with ethical standards: the study was approved by Ethical Review Board at SibSMU (Protocol № 8201 of 27 March 2020) and carried out in compliance with humanity principles stated in the 86/609 EEC Directive and the Declaration of Helsinki.

Received: 2022-08-11 Accepted: 2022-08-25 Published online: 2022-08-30
|
  1. Kryukov NN, Ginzburg MM, Kiseleva EV. Sovremennyj vzglyad na rol' asepticheskogo vospaleniya zhirovoj tkani v geneze ozhireniya i metabolicheskogo sindroma. Arterial'naya gipertenziya. 2013; 19 (4): 305–10. Russian.
  2. McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018; 36 (1): 14–20.
  3. Makarova MN, Makarov VG. Diet-inducirovannye modeli metabolicheskix narushenij. Ehksperimental'nyj metabolicheskij sindrom. Laboratornye zhivotnye dlya nauchnyx issledovanij. 2018; 1. Dostupno po ssylke: https://labanimalsjournal.ru/ ru/2618723x-2018-01-08. Russian.
  4. Kravchuk EN, Galagudza MM. Ehksperimental'nye modeli metabolicheskogo sindroma. Arterial'naya gipertenziya. 2014; 20 (5): 377–83. Russian.
  5. Birulina YuG, Ivanov VV, Buyko EE, Trubacheva OA, Petrova IV, Grechishnikova AYu, i dr. Vliyanie vysokozhirovoj i vysokouglevodnoj diety na kletki krovi krys. Byulleten' sibirskoj mediciny. 2021; 20 (3): 6–12. Russian.
  6. Chernysheva MB, Tsvetkov IS, Diatroptov ME, Makarova OV. Morfologicheskie izmeneniya vnutrennix organov i metabolicheskie narusheniya pri ehksperimental'nom alimentarnom ozhirenii. Klinicheskaya i ehksperimental'naya morfologiya. 2016; 1 (17): 44–51. Russian.
  7. Henning RJ. Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: a review of the pathophysiology and treatment of obesity. Am J Cardiovasc Dis. 2021; 11 (4): 504–29.
  8. Birulina YuG, Ivanov VV, Buyko EE, Bykov VV, Nosarev AV, Kovalev IV, Smaglij LV, Gusakova SV, avtory. Sposob modelirovaniya diet-inducirovannogo metabolicheskogo sindroma. FGBOU VO SibGMU Minzdrava Rossii, patentoobladatel'. Patent RF # #2740007 ot 30.12.2020. Russian
  9. Liu L, Zou P, Zheng L, Linarelli LE, Amarell S, Passaro A, et. al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 201; 6 (1): e1586.
  10. Bayrasheva VK, Pchelin IYu, Egorova AEh, Vasilkova ON, Kornyushin OV. Ehksperimental'nye modeli alimentarnogo ozhireniya u krys. Juvenis Scientia. 2019; 9–10: 8–13. Russian.
  11. Lucero D, Olano C, Bursztyn M, Morales C, Stranges A, Friedman S, et al. Supplementation with n‒3, n‒6, n‒9 fatty acids in an insulin resistance animal model: Does it improve VLDL quality? Food Funct. 2017; 8 (5): 2053–61.
  12. Kwitek AE. Rat models of metabolic syndrome. Methods Mol Biol. 2019; 2018: 269–85.
  13. Riger NA, Shipelin VA, Apryatin SA, Gmoshinski IV. Immunologicheskie markery alimentarno-inducirovannoj giperlipidemii u krys linii Vistar. Voprosy pitaniya. 2019; 88 (3): 44–52. Russian.
  14. Romantsova TI, Sych YuP. Immunometabolizm i metavospalenie pri ozhirenii. Ozhirenie i metabolizm. 2019; 16 (4): 3–17. Russian.
  15. Ghadge AA, Khaire AA. Leptin as a predictive marker for metabolic syndrome. Cytokine. 2019; 121: 154735.
  16. Gonzalez-Carter D, Goode AE, Fiammengo R, Dunlop IE, Dexter DT, Porter AE. Inhibition of Leptin-ObR Interaction Does not Prevent Leptin Translocation Across a Human Blood-Brain Barrier Model. J Neuroendocrinol. 2016; 28 (6). Available from: https:// onlinelibrary.wiley.com/doi/10.1111/jne.12392.
  17. Kiernan K, MacIver NJ. The Role of the Adipokine Leptin in Immune Cell Function in Health and Disease. Front Immunol. 2021; 11: 622468.
  18. Frühbeck G, Catalán V, Rodríguez A, et al. Normalization of adiponectin concentrations by leptin replacement in ob/ob mice is accompanied by reductions in systemic oxidative stress and inflammation. Scientific Reports. 2017; 7 (1): 2752.
  19. Lee B-C, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease. 2014; 1842 (3): 446–62.
  20. Tanyanskiy DA, Denisenko AD. Vliyanie adiponektina na obmen uglevodov, lipidov i lipoproteinov: analiz signal'nyx mexanizmov. Ozhirenie i metabolizm. 2021; 18 (2): 103–11. Russian.
  21. Ritchie IR, Dyck DJ. Rapid loss of adiponectin-stimulated fatty acid oxidation in skeletal muscle of rats fed a high fat diet is not due to altered muscle redox state. PLoS One. 2012; 7 (12): e52193.
  22. Memoli B, Procino A, Calabrò P, Esposito P, Grandaliano G, Pertosa G, et al. Inflammation may modulate IL6 and C-reactive protein gene expression in the adipose tissue: the role of IL6 cell membrane receptor. Am J Physiol Endocrinol Metab. 2007; 293: E1030–E1035.
  23. Kaneko H, Anzai T, Nagai T, Anzai A, Takahashi T, Mano Y, et al. Human C-reactive protein exacerbates metabolic disorders in association with adipose tissue remodeling. Cardiovasc Res. 2011; 1: 546–55.
  24. do Carmo LS, Rogero MM, Paredes-Gamero EJ, Nogueira-Pedro A, Xavier JG, Cortezet M, et al. A high-fat diet increases interleukin-3 and granulocyte colony-stimulating factor production by bone marrow cells and triggers bone marrow hyperplasia and neutrophilia in Wistar rats. Exp Biol Med (Maywood). 2013; 238 (4): 375–84.
  25. Purdy JC, Shatzel JJ. The hematologic consequences of obesity. Eur J Haematol. 2021; 106 (3): 306–19.
  26. Farhangi MA, Keshavarz SA, Eshraghian M, Ostadrahimi A, Saboor-Yaraghi AA. White blood cell count in women: relation to inflammatory biomarkers, haematological profiles, visceral adiposity, and other cardiovascular risk factors. J Health Popul Nutr. 2013; 31 (1): 58–64.
  27. Herishanu Y, Rogowski O, Polliack A, Marilus R. Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia. European journal of haematology. 2006; 76 (6): 516–20.
  28. Pini M, Rhodes DH, Fantuzzi G. Hematological and acute-phase responses to diet-induced obesity in IL6 KO mice. Cytokine. 2011; 56 (3): 708–16.
  29. Netzer N, Gatterer H, Faulhaber M, Burtscher M, Pramsohler S, Pesta D. Hypoxia, oxidative stress and fat. Biomolecules. 2015; 5: 1143–50.