ORIGINAL RESEARCH

Combined effects of bacteriophage vB_SauM-515A1 and antibiotics on the Staphylococcus aureus clinical isolates

About authors

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia

Correspondence should be addressed: Maria A. Kornienko
Malaya Pirogovskaya, 1а, Moscow, 119435; moc.liamg@ayiramokneinrok

About paper

Funding: the study was funded by the Russian Science Foundation, project number 22-15-00443, https://rscf.ru/project/22-15-00443/.

Acknowledgements: the authors express their gratitude to the Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of the Russian Federal Medical Biological Agency, for bacterial gene sequencing required for multilocus sequence typing of the strains.

Author contribution: Abdraimova NK, Kornienko MA — study plan, data acquisition and processing, manuscript writing; Bespiatykh DA — data processing, Kuptsov NS — data acquisition; Gorodnichev RB — study plan, data processing; Shitikov EA — data processing, manuscript writing.

Compliance with ethical standards: the study was carried out in accordance with the sanitary and hygienic guidelines SP 1.3.2322-08 “Safety of Working With Microorganisms of III-IV Groups of Pathogenicity (Danger) and Causative Agents of Parasitic Diseases”; sanitary and hygienic guidelines SP 1.3.2518-09 "Additions and Amendments № 1 to the guidelines SP 1.3.2322-08 "Safety of Working With Microorganisms of III-IV Groups of Pathogenicity (Danger) and Causative Agents of Parasitic Diseases"; sanitary and hygienic guidelines "Sanitary and Epidemiologic Requirements for the Handling of Medical Waste" (SanPiN 2.1.7.2790-10); Federal Clinical Guidelines "Rational Use of Bacteriophages in Clinical and Epidemiological Practice".

Received: 2022-09-23 Accepted: 2022-10-18 Published online: 2022-10-26
|
  1. Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis. 2017; 75 (1): ftx005.
  2. Murray CJ, Ikuta KS, Sharara F, Swetschinski L,Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399 (10325): 629–55.
  3. Kuzmenkov AY, Trushin IV, Vinogradova AG, Avramenko AA, Sukhorukova MV, Malhotra-Kumar S, et al. AMRmap: An Interactive Web Platform for Analysis of Antimicrobial Resistance Surveillance Data in Russia. Front Microbiol Frontiers Media S.A. 2021; (12): 620002.
  4. McGuinness WA, Malachowa N, DeLeo FR. Vancomycin Resistance in Staphylococcus aureus. Yale J Biol Med. 2017; 90 (2): 269.
  5. Stefani S, Bongiorno D, Mongelli G, Campanile F. Linezolid Resistance in Staphylococci. Pharmaceuticals. 2010; 3 (7): 1988–2006.
  6. D'Accolti M, Soffritti I, Mazzacane S, Caselli E. Bacteriophages as a Potential 360-Degree Pathogen Control Strategy Microorganisms. 2021; 9 (2): 261.
  7. Kuptsov NS, Kornienko MA, Gorodnichev RB, Danilov DI, Malakhova MV, Parfenova TV, et al. Efficacy of commercial bacteriophage products against ESKAPE pathogens.Bulletin of RSMU. 2020; (3): 18–25.
  8. Harper DR. Criteria for Selecting Suitable Infectious Diseases for Phage Therapy. Viruses. 2018; 10 (4): 177.
  9. Nikolich MP, Filippov AA. Bacteriophage therapy: Developments and directions. Antibiotics. 2020; 9 (3): 135.
  10. Kaźmierczak N, Grygorcewicz B, Roszak M, Bochentyn B, Piechowicz L. Comparative Assessment of Bacteriophage and Antibiotic Activity against Multidrug-Resistant Staphylococcus aureus Biofilms. Int J Mol Sci. 2022; 23 (3): 1274.
  11. Prazak J, Iten M, Cameron DR, Save J, Grandgirard D, Resch G, et al. Bacteriophages Improve Outcomes in Experimental Staphylococcus aureus Ventilator-associated Pneumonia. Am J Respir Crit Care Med. 2019; 200 (9): 1126–33.
  12. Fabijan AP, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020; 5 (3): 465–72.
  13. Comeau AM, Tétart F, Trojet SN, Prère MF, Krisch HM. PhageAntibiotic Synergy (PAS): β-Lactam and Quinolone Antibiotics Stimulate Virulent Phage Growth. PLoS One. 2007; 2 (8): e799.
  14. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000; 38 (3): 1008–15.
  15. Jansen M, Wahida A, Latz S, Krüttgen A, Häfner H, Buhl EM, et al. Enhanced antibacterial effect of the novel T4-like bacteriophage KARL-1 in combination with antibiotics against multi-drug resistant Acinetobacter baumannii. Sci Rep. 2018; 8 (1): 14140.
  16. Kebriaei R, Lev K, Morrisette T, Stamper KC, Abdul-Mutakabbir JC, Lehman SM, et al. Bacteriophage-Antibiotic Combination Strategy: an Alternative against Methicillin-Resistant Phenotypes of Staphylococcus aureus. Antimicrob Agents Chemother, 2020; 64 (7): e00461–20.
  17. Simon K, Pier W, Krüttgen A, Horz HP. Synergy between Phage Sb-1 and Oxacillin against Methicillin-Resistant Staphylococcus aureus. Antibiotics. 2021; 10 (7): 849.
  18. M100 Performance Standards for Antimicrobial Susceptibility Testing An informational supplement for global applicationdeveloped through the Clinical and Laboratory Standards Institute consensus process. 29th Edition. January 2019.
  19. Kornienko M, Kuptsov N, Gorodnichev R, Bespiatykh D, Guliaev A, Letarova M, et al. Contribution of Podoviridae and Myoviridae bacteriophages to the effectiveness of anti-staphylococcal therapeutic cocktails. Sci Rep. 2020; 10 (1): 18612.
  20. Kornienko M, Fisunov G, Bespiatykh D, Kuptsov N, Gorodnichev R, Klimina K, et al. Transcriptional Landscape of Staphylococcus aureus Kayvirus Bacteriophage vB_SauM-515A1. Viruses. 2020; 12 (11): 1320.
  21. Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages using the small drop plaque assay system. Methods Mol Biol. 2009; (501): 81–85.
  22. Kuptsov N, Kornienko M, Bespiatykh D, Gorodnichev R, Klimina K, Veselovsky V, et al. Global transcriptomic response of staphylococcus aureus to virulent bacteriophage infection. Viruses. 2022; 14 (3): 567.
  23. Rao Q, Shang W, Hu X, Rao X. Staphylococcus aureus ST121: a globally disseminated hypervirulent clone. J Med Microbiol. 2015; 64 (12): 1462–73.
  24. Ogura K, Kaji D, Sasaki M, Otsuka Y, Takemoto N, MiyoshiAkiyama T, et al. Predominance of ST8 and CC1/spa-t1784 methicillin-resistant Staphylococcus aureus isolates in Japan and their genomic characteristics. J Glob Antimicrob Resist. 2022; (28): 195–202.
  25. Wang L, Tkhilaishvili T, Trampuz A. Adjunctive Use of Phage Sb-1 in Antibiotics Enhances Inhibitory Biofilm Growth Activity versus Rifampin-Resistant Staphylococcus aureus Strains. Antibiot (Basel, Switzerland). 2020; 9 (11): 1–12.
  26. Sorrell TC, Packham DR, Shanker S, Foldes M, Munro R. Vancomycin therapy for methicillin-resistant Staphylococcus aureus. Ann Intern Med. 1982; 97 (3): 344–51.
  27. Dickey J, Perrot V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One. 2019; 14 (1): e0209390.
  28. Berryhill BA, Huseby DL, McCall IC, Hughes D, Levin BR. Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proc Natl Acad Sci. 2021; 118 (10): e2008007118.
  29. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Reports. 2016; 6 (1): 1–8.