ORIGINAL RESEARCH
Combined effects of bacteriophage vB_SauM-515A1 and antibiotics on the Staphylococcus aureus clinical isolates
Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
Correspondence should be addressed: Maria A. Kornienko
Malaya Pirogovskaya, 1а, Moscow, 119435; moc.liamg@ayiramokneinrok
Funding: the study was funded by the Russian Science Foundation, project number 22-15-00443, https://rscf.ru/project/22-15-00443/.
Acknowledgements: the authors express their gratitude to the Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of the Russian Federal Medical Biological Agency, for bacterial gene sequencing required for multilocus sequence typing of the strains.
Author contribution: Abdraimova NK, Kornienko MA — study plan, data acquisition and processing, manuscript writing; Bespiatykh DA — data processing, Kuptsov NS — data acquisition; Gorodnichev RB — study plan, data processing; Shitikov EA — data processing, manuscript writing.
Compliance with ethical standards: the study was carried out in accordance with the sanitary and hygienic guidelines SP 1.3.2322-08 “Safety of Working With Microorganisms of III-IV Groups of Pathogenicity (Danger) and Causative Agents of Parasitic Diseases”; sanitary and hygienic guidelines SP 1.3.2518-09 "Additions and Amendments № 1 to the guidelines SP 1.3.2322-08 "Safety of Working With Microorganisms of III-IV Groups of Pathogenicity (Danger) and Causative Agents of Parasitic Diseases"; sanitary and hygienic guidelines "Sanitary and Epidemiologic Requirements for the Handling of Medical Waste" (SanPiN 2.1.7.2790-10); Federal Clinical Guidelines "Rational Use of Bacteriophages in Clinical and Epidemiological Practice".
- Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis. 2017; 75 (1): ftx005.
- Murray CJ, Ikuta KS, Sharara F, Swetschinski L,Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399 (10325): 629–55.
- Kuzmenkov AY, Trushin IV, Vinogradova AG, Avramenko AA, Sukhorukova MV, Malhotra-Kumar S, et al. AMRmap: An Interactive Web Platform for Analysis of Antimicrobial Resistance Surveillance Data in Russia. Front Microbiol Frontiers Media S.A. 2021; (12): 620002.
- McGuinness WA, Malachowa N, DeLeo FR. Vancomycin Resistance in Staphylococcus aureus. Yale J Biol Med. 2017; 90 (2): 269.
- Stefani S, Bongiorno D, Mongelli G, Campanile F. Linezolid Resistance in Staphylococci. Pharmaceuticals. 2010; 3 (7): 1988–2006.
- D'Accolti M, Soffritti I, Mazzacane S, Caselli E. Bacteriophages as a Potential 360-Degree Pathogen Control Strategy Microorganisms. 2021; 9 (2): 261.
- Kuptsov NS, Kornienko MA, Gorodnichev RB, Danilov DI, Malakhova MV, Parfenova TV, et al. Efficacy of commercial bacteriophage products against ESKAPE pathogens.Bulletin of RSMU. 2020; (3): 18–25.
- Harper DR. Criteria for Selecting Suitable Infectious Diseases for Phage Therapy. Viruses. 2018; 10 (4): 177.
- Nikolich MP, Filippov AA. Bacteriophage therapy: Developments and directions. Antibiotics. 2020; 9 (3): 135.
- Kaźmierczak N, Grygorcewicz B, Roszak M, Bochentyn B, Piechowicz L. Comparative Assessment of Bacteriophage and Antibiotic Activity against Multidrug-Resistant Staphylococcus aureus Biofilms. Int J Mol Sci. 2022; 23 (3): 1274.
- Prazak J, Iten M, Cameron DR, Save J, Grandgirard D, Resch G, et al. Bacteriophages Improve Outcomes in Experimental Staphylococcus aureus Ventilator-associated Pneumonia. Am J Respir Crit Care Med. 2019; 200 (9): 1126–33.
- Fabijan AP, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020; 5 (3): 465–72.
- Comeau AM, Tétart F, Trojet SN, Prère MF, Krisch HM. PhageAntibiotic Synergy (PAS): β-Lactam and Quinolone Antibiotics Stimulate Virulent Phage Growth. PLoS One. 2007; 2 (8): e799.
- Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000; 38 (3): 1008–15.
- Jansen M, Wahida A, Latz S, Krüttgen A, Häfner H, Buhl EM, et al. Enhanced antibacterial effect of the novel T4-like bacteriophage KARL-1 in combination with antibiotics against multi-drug resistant Acinetobacter baumannii. Sci Rep. 2018; 8 (1): 14140.
- Kebriaei R, Lev K, Morrisette T, Stamper KC, Abdul-Mutakabbir JC, Lehman SM, et al. Bacteriophage-Antibiotic Combination Strategy: an Alternative against Methicillin-Resistant Phenotypes of Staphylococcus aureus. Antimicrob Agents Chemother, 2020; 64 (7): e00461–20.
- Simon K, Pier W, Krüttgen A, Horz HP. Synergy between Phage Sb-1 and Oxacillin against Methicillin-Resistant Staphylococcus aureus. Antibiotics. 2021; 10 (7): 849.
- M100 Performance Standards for Antimicrobial Susceptibility Testing An informational supplement for global applicationdeveloped through the Clinical and Laboratory Standards Institute consensus process. 29th Edition. January 2019.
- Kornienko M, Kuptsov N, Gorodnichev R, Bespiatykh D, Guliaev A, Letarova M, et al. Contribution of Podoviridae and Myoviridae bacteriophages to the effectiveness of anti-staphylococcal therapeutic cocktails. Sci Rep. 2020; 10 (1): 18612.
- Kornienko M, Fisunov G, Bespiatykh D, Kuptsov N, Gorodnichev R, Klimina K, et al. Transcriptional Landscape of Staphylococcus aureus Kayvirus Bacteriophage vB_SauM-515A1. Viruses. 2020; 12 (11): 1320.
- Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages using the small drop plaque assay system. Methods Mol Biol. 2009; (501): 81–85.
- Kuptsov N, Kornienko M, Bespiatykh D, Gorodnichev R, Klimina K, Veselovsky V, et al. Global transcriptomic response of staphylococcus aureus to virulent bacteriophage infection. Viruses. 2022; 14 (3): 567.
- Rao Q, Shang W, Hu X, Rao X. Staphylococcus aureus ST121: a globally disseminated hypervirulent clone. J Med Microbiol. 2015; 64 (12): 1462–73.
- Ogura K, Kaji D, Sasaki M, Otsuka Y, Takemoto N, MiyoshiAkiyama T, et al. Predominance of ST8 and CC1/spa-t1784 methicillin-resistant Staphylococcus aureus isolates in Japan and their genomic characteristics. J Glob Antimicrob Resist. 2022; (28): 195–202.
- Wang L, Tkhilaishvili T, Trampuz A. Adjunctive Use of Phage Sb-1 in Antibiotics Enhances Inhibitory Biofilm Growth Activity versus Rifampin-Resistant Staphylococcus aureus Strains. Antibiot (Basel, Switzerland). 2020; 9 (11): 1–12.
- Sorrell TC, Packham DR, Shanker S, Foldes M, Munro R. Vancomycin therapy for methicillin-resistant Staphylococcus aureus. Ann Intern Med. 1982; 97 (3): 344–51.
- Dickey J, Perrot V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One. 2019; 14 (1): e0209390.
- Berryhill BA, Huseby DL, McCall IC, Hughes D, Levin BR. Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proc Natl Acad Sci. 2021; 118 (10): e2008007118.
- Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Reports. 2016; 6 (1): 1–8.