Copyright: © 2022 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Transgenic mice for study of the CDK8/19 cyclin-dependent kinase kinase-independent mechanisms of action

Stavskaya NI1, Ilchuk LA2, Okulova YuD2, Kubekina MV2, Varlamova EA2, Silaeva YY1, Bruter AV2
About authors

1 Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia

2 Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia

Correspondence should be addressed: Leonid A. Ilchuk
Prospekt Mira, 124, Moscow, 129164, Russia; moc.liamg@21kuhcel

About paper

Funding: RSF grant, project № 22-15-00227.

Author contribution: Stavskaya NI ― experimental procedure, working with animals; Ilchuk LA ― manuscript writing, design of genotyping systems, data analysis; Okulova YuD ― working with embryos; Kubekina MV ― preparation of genetically engineered construct, experimental procedure; Varlamova EA ― experimental procedure; Silaeva YuYu ― literature analysis, study planning; Bruter AV ― literature analysis, study planning, data analysis and interpretation, manuscript editing.

Compliance with ethical standards: the study was approved by the Ethics Commitee of the Institute of Gene Biology RAS (protocol No. 1 of 10 November 2021) and conducted in full compliance with the Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes.

Received: 2022-11-22 Accepted: 2022-12-19 Published online: 2022-12-28
|
  1. Dannappel MV, Sooraj D, Loh JJ, Firestein R. Molecular and in vivo Functions of the CDK8 and CDK19 Kinase Modules. Frontiers in Cell and Developmental Biology. 2019; 6. DOI: 10.3389/fcell.2018.00171.
  2. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour MR, et al. Cyclin C is a haploinsufficient tumour suppressor. Nature cell biology. 2014; 16 (11): 1080–91. Epub 2014/10/27. DOI: 10.1038/ ncb3046. PubMed PMID: 25344755; PubMed Central PMCID: PMCPMC4235773.
  3. Bancerek J, Poss ZC, Steinparzer I, Sedlyarov V, Pfaffenwimmer T, Mikulic I, et al. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity. 2013; 38 (2): 250–62. Epub 2013/01/29. DOI: 10.1016/j. immuni.2012.10.017. PubMed PMID: 23352233; PubMed Central PMCID: PMCPMC3580287.
  4. Galbraith MD, Donner AJ, Espinosa JM. CDK8: a positive regulator of transcription. Transcription. 2010; 1 (1): 4–12. Epub 2011/02/18. DOI: 10.4161/trns.1.1.12373. PubMed PMID: 21327159; PubMed Central PMCID: PMCPMC3035184.
  5. Chen M, Liang J, Ji H, Yang Z, Altilia S, Hu B, et al. CDK8/19 Mediator kinases potentiate induction of transcription by NFκB. Proceedings of the National Academy of Sciences. 2017; 114 (38): 10208–13. DOI: 10.1073/pnas.1710467114.
  6. Galbraith Matthew D, Allen Mary A, Bensard Claire L, Wang X, Schwinn Marie K, Qin B, et al. HIF1A Employs CDK8-Mediator to Stimulate RNAPII Elongation in Response to Hypoxia. Cell. 2013; 153 (6): 1327–39. DOI: https://doi.org/10.1016/j. cell.2013.04.048.
  7. Steinparzer I, Sedlyarov V, Rubin JD, Eislmayr K, Galbraith MD, Levandowski CB, et al. Transcriptional Responses to IFN-γ Require Mediator Kinase-Dependent Pause Release and Mechanistically Distinct CDK8 and CDK19 Functions. Molecular Cell. 2019; 76 (3): 485–99. Available from: https://doi.org/10.1016/j. molcel.2019.07.034.
  8. Adler AS, McCleland ML, Truong T, Lau S, Modrusan Z, Soukup TM, et al. CDK8 Maintains Tumor Dedifferentiation and Embryonic Stem Cell Pluripotency. Cancer Research. 2012; 72 (8): 2129–39. DOI: 10.1158/0008-5472.CAN-11-3886.
  9. Fukasawa K, Kadota T, Horie T, Tokumura K, Terada R, Kitaguchi Y, et al. CDK8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-MYC pathway. Oncogene. 2021; 40 (15): 2803–15. DOI: 10.1038/s41388-021-01745-1.
  10. Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I, et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature. 2008; 455 (7212): 547–51. Epub 2008/09/17. DOI: 10.1038/nature07179. PubMed PMID: 18794900; PubMed Central PMCID: PMCPMC2587138.
  11. Bruter AV, Rodionova MD, Varlamova EA, Shtil AA. Super- Enhancers in the Regulation of Gene Transcription: General Aspects and Antitumor Targets. Acta naturae. 2021; 13 (1): 4–15. Epub 2021/05/08. DOI: 10.32607/actanaturae.11067. PubMed PMID: 33959383; PubMed Central PMCID: PMCPMC8084300.
  12. Audetat KA, Galbraith Matthew D, Odell Aaron T, Lee T, Pandey A, Espinosa Joaquin M, et al. A Kinase-Independent Role for Cyclin- Dependent Kinase 19 in p53 Response. Molecular and Cellular Biology. 2017; 37 (13): e00626–16. DOI: 10.1128/MCB.00626-16.
  13. Menzl I, Zhang T, Berger-Becvar A, Grausenburger R, Heller G, Prchal-Murphy M, et al. A kinase-independent role for CDK8 in BCR-ABL1(+) leukemia. Nature communications. 2019; 10 (1): 4741. Epub 2019/10/20. DOI: 10.1038/s41467-019-12656-x. PubMed PMID: 31628323.
  14. Bruter AV, Korshunova DS, Kubekina MV, Sergiev PV, Kalinina AA, Ilchuk LA, et al. Novel transgenic mice with Cre-dependent co-expression of GFP and human ACE2: a safe tool for study of COVID-19 pathogenesis. Transgenic research. 2021; 30 (3): 289–301. Epub 2021/04/16. DOI: 10.1007/s11248-021- 00249-8. PubMed PMID: 33855640; PubMed Central PMCID: PMCPMC8045570.
  15. Kubekina MV, Silaeva YY, Bruter AV, Korshunova DS, Ilchuk LA, Okulova YD, et al. Transgenic mice Cre-dependently expressing mutant polymerase-gamma: novel test-system for pharmacological study of mitoprotective drugs. Research Results in Pharmacology. 2021; 7 (3): 33–9.
  16. Silaeva YY, Kirikovich YK, Skuratovskaya LN, Deikin AV. Optimal Number of Embryos for Transplantation in Obtaining Genetic-Modified Mice and Goats. Russian Journal of Developmental Biology. 2018; 49 (6): 356–61. DOI: 10.1134/ S106236041806005X.
  17. Akoulitchev S, Chuikov S, Reinberg D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature. 2000; 407 (6800): 102–6. DOI: 10.1038/35024111. PMID: 10993082.
  18. McCleland ML, Soukup TM, Liu SD, Esensten JH, de Sousa e Melo F, Yaylaoglu M, et al. Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis. The Journal of pathology. 2015; 237 (4): 508–19. Epub 2015/08/04. DOI: 10.1002/path.4596. PubMed PMID: 26235356.
  19. Dannappel MV, Zhu D, Sun X, Chua HK, Poppelaars M, Suehiro M, et al. CDK8 and CDK19 regulate intestinal differentiation and homeostasis via the chromatin remodeling complex SWI/SNF. The Journal of clinical investigation. 2022; 132 (20). Epub 2022/08/26. DOI: 10.1172/jci158593. PubMed PMID: 36006697; PubMed Central PMCID: PMCPMC9566890.
  20. Prieto S, Dubra G, Camasses A, Aznar AB, Begon-Pescia C, Simboeck E, et al. CDK8 and CDK19 act redundantly to control the CFTR pathway in the intestinal epithelium. EMBO reports. n/a (n/a): e54261. DOI: https://doi.org/10.15252/embr.202154261.
  21. Clarke PA, Ortiz-Ruiz MJ, TePoele R, Adeniji-Popoola O, Box G, Court W, et al. Assessing the mechanism and therapeutic potential of modulators of the human Mediator complex-associated protein kinases. eLife. 2016; 5. Epub 2016/12/10. DOI: 10.7554/ eLife.20722. PubMed PMID: 27935476; PubMed Central PMCID: PMCPMC5224920.