ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Трансгенные мыши для изучения киназа-независимых механизмов действия циклин-зависимых киназ CDK8/19

Н. И. Ставская1, Л. А. Ильчук2, Ю. Д. Окулова2, М. В. Кубекина2, Е. А. Варламова2, Ю. Ю. Силаева1, А. В. Брутер2
Информация об авторах

1 Институт биологии гена Российской академии наук, Москва, Россия

2 Центр высокоточного редактирования и генетических технологий для биомедицины, Институт биологии гена Российской академии наук, Москва, Россия

Для корреспонденции: Леонид Альбертович Ильчук
проспект Мира, д. 124, г. Москва, 129164, Россия; moc.liamg@21kuhcel

Информация о статье

Финансирование: Грант РНФ № 22-15-00227.

Вклад авторов: Н. И. Ставская ― проведение экспериментов, работа с животными; Л. А. Ильчук ― написание рукописи, разработка систем генотипирования, анализ результатов; Ю. Д. Окулова ― с эмбрионами; М. В. Кубекина ― подготовка генно-инженерной конструкции, проведение экспериментов; Е. А. Варламова ― проведение экспериментов; Ю. Ю. Силаева ― анализ литературы, планирование исследования; А. В. Брутер ― анализ литературы, планирование исследования, анализ и интерпретация результатов, редактирование рукописи.

Соблюдение этических стандартов: исследование одобрено этическим комитетом ИБГ РАН (протокол № 1 от 10 ноября 2021 г.) и проведено в строгом соответствии с положениями Директивы 2010/63/EU Европейского Парламента и Совета Европейского Союза от 22 сентября 2010 г. по охране животных, используемых в научных целях.

Статья получена: 22.11.2022 Статья принята к печати: 19.12.2022 Опубликовано online: 28.12.2022
|
  1. Dannappel MV, Sooraj D, Loh JJ, Firestein R. Molecular and in vivo Functions of the CDK8 and CDK19 Kinase Modules. Frontiers in Cell and Developmental Biology. 2019; 6. DOI: 10.3389/fcell.2018.00171.
  2. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour MR, et al. Cyclin C is a haploinsufficient tumour suppressor. Nature cell biology. 2014; 16 (11): 1080–91. Epub 2014/10/27. DOI: 10.1038/ ncb3046. PubMed PMID: 25344755; PubMed Central PMCID: PMCPMC4235773.
  3. Bancerek J, Poss ZC, Steinparzer I, Sedlyarov V, Pfaffenwimmer T, Mikulic I, et al. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity. 2013; 38 (2): 250–62. Epub 2013/01/29. DOI: 10.1016/j. immuni.2012.10.017. PubMed PMID: 23352233; PubMed Central PMCID: PMCPMC3580287.
  4. Galbraith MD, Donner AJ, Espinosa JM. CDK8: a positive regulator of transcription. Transcription. 2010; 1 (1): 4–12. Epub 2011/02/18. DOI: 10.4161/trns.1.1.12373. PubMed PMID: 21327159; PubMed Central PMCID: PMCPMC3035184.
  5. Chen M, Liang J, Ji H, Yang Z, Altilia S, Hu B, et al. CDK8/19 Mediator kinases potentiate induction of transcription by NFκB. Proceedings of the National Academy of Sciences. 2017; 114 (38): 10208–13. DOI: 10.1073/pnas.1710467114.
  6. Galbraith Matthew D, Allen Mary A, Bensard Claire L, Wang X, Schwinn Marie K, Qin B, et al. HIF1A Employs CDK8-Mediator to Stimulate RNAPII Elongation in Response to Hypoxia. Cell. 2013; 153 (6): 1327–39. DOI: https://doi.org/10.1016/j. cell.2013.04.048.
  7. Steinparzer I, Sedlyarov V, Rubin JD, Eislmayr K, Galbraith MD, Levandowski CB, et al. Transcriptional Responses to IFN-γ Require Mediator Kinase-Dependent Pause Release and Mechanistically Distinct CDK8 and CDK19 Functions. Molecular Cell. 2019; 76 (3): 485–99. Available from: https://doi.org/10.1016/j. molcel.2019.07.034.
  8. Adler AS, McCleland ML, Truong T, Lau S, Modrusan Z, Soukup TM, et al. CDK8 Maintains Tumor Dedifferentiation and Embryonic Stem Cell Pluripotency. Cancer Research. 2012; 72 (8): 2129–39. DOI: 10.1158/0008-5472.CAN-11-3886.
  9. Fukasawa K, Kadota T, Horie T, Tokumura K, Terada R, Kitaguchi Y, et al. CDK8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-MYC pathway. Oncogene. 2021; 40 (15): 2803–15. DOI: 10.1038/s41388-021-01745-1.
  10. Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I, et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature. 2008; 455 (7212): 547–51. Epub 2008/09/17. DOI: 10.1038/nature07179. PubMed PMID: 18794900; PubMed Central PMCID: PMCPMC2587138.
  11. Bruter AV, Rodionova MD, Varlamova EA, Shtil AA. Super- Enhancers in the Regulation of Gene Transcription: General Aspects and Antitumor Targets. Acta naturae. 2021; 13 (1): 4–15. Epub 2021/05/08. DOI: 10.32607/actanaturae.11067. PubMed PMID: 33959383; PubMed Central PMCID: PMCPMC8084300.
  12. Audetat KA, Galbraith Matthew D, Odell Aaron T, Lee T, Pandey A, Espinosa Joaquin M, et al. A Kinase-Independent Role for Cyclin- Dependent Kinase 19 in p53 Response. Molecular and Cellular Biology. 2017; 37 (13): e00626–16. DOI: 10.1128/MCB.00626-16.
  13. Menzl I, Zhang T, Berger-Becvar A, Grausenburger R, Heller G, Prchal-Murphy M, et al. A kinase-independent role for CDK8 in BCR-ABL1(+) leukemia. Nature communications. 2019; 10 (1): 4741. Epub 2019/10/20. DOI: 10.1038/s41467-019-12656-x. PubMed PMID: 31628323.
  14. Bruter AV, Korshunova DS, Kubekina MV, Sergiev PV, Kalinina AA, Ilchuk LA, et al. Novel transgenic mice with Cre-dependent co-expression of GFP and human ACE2: a safe tool for study of COVID-19 pathogenesis. Transgenic research. 2021; 30 (3): 289–301. Epub 2021/04/16. DOI: 10.1007/s11248-021- 00249-8. PubMed PMID: 33855640; PubMed Central PMCID: PMCPMC8045570.
  15. Kubekina MV, Silaeva YY, Bruter AV, Korshunova DS, Ilchuk LA, Okulova YD, et al. Transgenic mice Cre-dependently expressing mutant polymerase-gamma: novel test-system for pharmacological study of mitoprotective drugs. Research Results in Pharmacology. 2021; 7 (3): 33–9.
  16. Silaeva YY, Kirikovich YK, Skuratovskaya LN, Deikin AV. Optimal Number of Embryos for Transplantation in Obtaining Genetic-Modified Mice and Goats. Russian Journal of Developmental Biology. 2018; 49 (6): 356–61. DOI: 10.1134/ S106236041806005X.
  17. Akoulitchev S, Chuikov S, Reinberg D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature. 2000; 407 (6800): 102–6. DOI: 10.1038/35024111. PMID: 10993082.
  18. McCleland ML, Soukup TM, Liu SD, Esensten JH, de Sousa e Melo F, Yaylaoglu M, et al. Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis. The Journal of pathology. 2015; 237 (4): 508–19. Epub 2015/08/04. DOI: 10.1002/path.4596. PubMed PMID: 26235356.
  19. Dannappel MV, Zhu D, Sun X, Chua HK, Poppelaars M, Suehiro M, et al. CDK8 and CDK19 regulate intestinal differentiation and homeostasis via the chromatin remodeling complex SWI/SNF. The Journal of clinical investigation. 2022; 132 (20). Epub 2022/08/26. DOI: 10.1172/jci158593. PubMed PMID: 36006697; PubMed Central PMCID: PMCPMC9566890.
  20. Prieto S, Dubra G, Camasses A, Aznar AB, Begon-Pescia C, Simboeck E, et al. CDK8 and CDK19 act redundantly to control the CFTR pathway in the intestinal epithelium. EMBO reports. n/a (n/a): e54261. DOI: https://doi.org/10.15252/embr.202154261.
  21. Clarke PA, Ortiz-Ruiz MJ, TePoele R, Adeniji-Popoola O, Box G, Court W, et al. Assessing the mechanism and therapeutic potential of modulators of the human Mediator complex-associated protein kinases. eLife. 2016; 5. Epub 2016/12/10. DOI: 10.7554/ eLife.20722. PubMed PMID: 27935476; PubMed Central PMCID: PMCPMC5224920.