OPINION

Metabolic engineering is a promising way to generate highly effective producers of bioactive substances

Blokhina AE1,2, Palkina KA1, Shakhova ES1, Malyshevskaia AK1,2, Osipova ZM1,3, Myshkina NM1
About authors

1 Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia

2 Lomonosov Moscow State University, Moscow, Russia

3 Pirogov Russian National Research Medical University, Moscow, Russia

Correspondence should be addressed: Nadezhda M. Myshkina
Miklukho-Maklaya, 16/10, Moscow, 117997, Russia; moc.liamg@aydan.anikram

About paper

Funding: the study was supported by the Russian Science Foundation Grant № 21-74-00075, https://rscf.ru/project/21-74-00075/

Acknowledgements: the authors would like to thank A.S. Sheglov, research fellow at the Laboratory of Chemistry of Metabolic Pathways, for valuable criticisms.

Author contribution: Blokhina AE, Palkina KA, Shakhova ES, Malyshevskaia AK, Osipova ZM — literature review, data processing; Myshkina NM — literature review, data processing, project management, manuscript writing.

Received: 2023-04-05 Accepted: 2023-04-19 Published online: 2023-04-26
|
  1. Liebig J. Ueber die Zersetzung des Alkohols durch Chlor. Ann Pharmacother. 1832; 1: 31–32.
  2. Campos KR, Coleman PJ, Alvarez JC, Dreher SD, Garbaccio RM, Terrett NK, et al. The importance of synthetic chemistry in the pharmaceutical industry. Science. 2019; 363. DOI: 10.1126/ science.aat0805.
  3. Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, et al. Organic synthesis provides opportunities to transform drug discovery. Nat Chem. 2018; 10: 383–94.
  4. Dhakal D, Kim E-S, Koffas M. Editorial: Engineering the Microbial Platform for the Production of Biologics and Small-Molecule Medicines. Frontiers in Microbiology. 2019. DOI: 10.3389/ fmicb.2019.02307.
  5. Diamos AG, Hunter JGL, Pardhe MD, Rosenthal SH, Sun H, Foster BC, et al. High Level Production of Monoclonal Antibodies Using an Optimized Plant Expression System. Front Bioeng Biotechnol. 2019; 7: 472.
  6. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. A modular cloning system for standardized assembly of multigene constructs. PLoS One. 2011; 6: e16765.
  7. Demirer GS, Zhang H, Goh NS, González-Grandío E, Landry MP. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants. Nat Protoc. 2019; 14: 2954–71.
  8. Gassler T, Sauer M, Gasser B, Egermeier M, Troyer C, Causon T, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat Biotechnol. 2020; 38: 210–16.
  9. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999; 27: 29–34.
  10. Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D. BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci. 2002; 27: 54–56.
  11. Wishart DS, Li C, Marcu A, Badran H, Pon A, Budinski Z, et al. PathBank: a comprehensive pathway database for model organisms. Nucleic Acids Res. 2020; 48: D470–8.
  12. Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, et al. ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res. 2007; 35: D863–9.
  13. Costello Z, Martin HG. A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst Biol Appl. 2018; 4: 19.
  14. Selma S, Sanmartín N, Espinosa-Ruiz A, Gianoglio S, LopezGresa MP, Vázquez-Vilar M, et al. Custom-made design of metabolite composition in N. benthamiana leaves using CRISPR activators. Plant Biotechnol J. 2022; 20: 1578–90.
  15. Garcia-Perez E, Diego-Martin B, Quijano-Rubio A, MorenoGiménez E, Selma S, Orzaez D, et al. A copper switch for inducing CRISPR/Cas9-based transcriptional activation tightly regulates gene expression in Nicotiana benthamiana. BMC Biotechnol. 2022; 22: 12.