ORIGINAL RESEARCH

Sources and impact of human brain potential variability in the brain-computer interface

Ganin IP1, Vasilyev AN1,2, Glazova TD1, Kaplan AYa1
About authors

1 Lomonosov Moscow State University, Moscow, Russia

2 Neurocognitive Research Center (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia

Correspondence should be addressed: Ilya P. Ganin
Leninskiye Gory, 1, str. 12, k. 246, Moscow, 119234, Russia; ur.liam@ninagpi

About paper

Funding: the study was supported by the Russian Science Foundation Grant № 21-75-00021, https://rscf.ru/project/21-75-00021/

Acknowledgements: the authors would like to thank Yu. Nuzhdin (Kurchatov Institute) for for developing and supporting software for EEG recording used to perform the study

Author contribution: Ganin IP — conducting research, data analysis and interpretation, literature review, manuscript writing; Vasilyev AN — data analysis and interpretation, literature review, manuscript writing; Glazova TD — conducting research, literature review; Kaplan AYa — data interpretation.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Lomonosov Moscow State University (protocol № 113-d of 19 June 2020); the informed consent was submitted by all study participants.

Received: 2023-04-14 Accepted: 2023-04-27 Published online: 2023-04-28
|
  1. Mridha MF, Das SC, Kabir MM, Lima AA, Islam MR, Watanobe Y. BrainComputer Interface: Advancement and Challenges. Sensors (Basel). 2021; 21 (17): 5746.
  2. Orban M, Elsamanty M, Guo K, Zhang S, Yang H. A Review of Brain Activity and EEG-Based Brain-Computer Interfaces for Rehabilitation Application. Bioengineering (Basel). 2022; 9 (12): 768.
  3. Carelli L, Solca F, Faini A, Meriggi P, Sangalli D, Cipresso P, Riva G, Ticozzi N, Ciammola A, Silani V, Poletti B. Brain-Computer Interface for Clinical Purposes: Cognitive Assessment and Rehabilitation. Biomed Res Int. 2017; 2017: 1695290.
  4. Ganin IP, Kosichenko EA, Sokolov AV, Ioannisyanc OM, Arefev IM, Basova AYa, Kaplan AYa. Adaptation of the p300-based braincomputer interface for anorexia nervosa patients state evaluation. Bulletin of RSMU. 2019; 2: 32-38.
  5. Eldeeb S, Susam BT, Akcakaya M, Conner CM, White SW, Mazefsky CA. Trial by trial EEG based BCI for distress versus non distress classification in individuals with ASD. Sci Rep. 2021; 11 (1): 6000.
  6. Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019; 16 (1): 011001.
  7. Luck SJ. An introduction to the event related potential technique. MIT Press, Cambridge, MA; 2005.
  8. Pan J, Chen X, Ban N, He J, Chen J, Huang H. Advances in P300 brain-computer interface spellers: toward paradigm design and performance evaluation. Front Hum Neurosci. 2022; 16: 1077717.
  9. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology. 1988; 70: 510–523.
  10. Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR. Toward enhanced P300 speller performance. J Neurosci Methods. 2008; 167 (1): 15–21.
  11. Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I. Brain–Computer Interface Spellers: A Review. Brain Sciences. 2018; 8 (4): 57.
  12. Allison BZ, Kübler A, Jin J. 30+ years of P300 brain-computer interfaces. Psychophysiology. 2020; 57 (7): e13569.
  13. Makeig S, Onton J. ERP features and EEG dynamics: an ICA perspective. Oxford handbook of event-related potential components. Oxford University Press, New York; 2011.
  14. Dowdall JR, Luczak A, Tata MS. Temporal variability of the N2pc during efficient and inefficient visual search. Neuropsychologia. 2012; 50 (10): 2442–53.
  15. Dinstein I, Heeger DJ, Behrmann M. Neural variability: friend or foe? Trends Cogn. Sci. 2015; 19 (6): 322–328.
  16. Ouyang G. Hildebrandt A, Sommer, W, Zhou C. Exploiting the intra-subject latency variability from single-trial event-related potentials in the P3 time range: A review and comparative evaluation of methods. Neurosci. Biobehav. Rev. 2017; 75: 1–21.
  17. Aricò P, Aloise F, Schettini F, Salinari S, Mattia D, Cincotti F. Influence of P300 latency jitter on event related potentialbased brain–computer interface performance. Journal of neural engineering. 2014; 11 (3): 035008.
  18. Ganin IP, Kaplan AYa. Study of the human brain potentials variability effects in P300 based brain–computer interface. Bulletin of RSMU. 2022; 3: 78–85.
  19. Yagi Y, Coburn KL, Estes KM, Arruda JE. Effects of aerobic exercise and gender on visual and auditory P300, reaction time, and accuracy. Eur J Appl Physiol Occup Physiol. 1999; 80 (5): 402–8.
  20. Kovarski K, Malvy J, Khanna RK, Arsène S, Batty M, Latinus M. Reduced visual evoked potential amplitude in autism spectrum disorder, a variability effect? Translational Psychiatry. 2019; 9 (1): 1–9.
  21. Gonen-Yaacovi G, Arazi A, Shahar N, Karmo A, Haar S, Meiran N, Dinstein I. Increased ongoing neural variability in ADHD. Cortex. 2016; 81: 50–63.
  22. Tou SLJ, Warschausky SA, Karlsson P, Huggins JE. Individualized Electrode Subset Improves the Calibration Accuracy of an EEG P300-design Brain-Computer Interface for People with Severe Cerebral Palsy. bioRxiv. 2023: 533775.
  23. Pires G, Nunes U, Castelo-Branco M. Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis. Journal of neuroscience methods. 2011; 195 (2): 270–281.
  24. Thompson DE, Warschausky S, Huggins JE. Classifier-based latency estimation: a novel way to estimate and predict BCI accuracy. Journal of neural engineering. 2013; 10 (1): 016006.
  25. Milne E. Increased intra-participant variability in children with autistic spectrum disorders: evidence from single-trial analysis of evoked EEG. Front Psychol. 2011; 2: 51.
  26. Basyul IA, Kaplan AYa. Izmeneniya N200 i P300 komponentov potencialov, svyazannyx s sobytiyami, pri var'irovanii uslovij vnimaniya v sisteme Brain Computer Interface. Zhurnal vysshej nervnoj deyatel'nosti im. IP Pavlova. 2014; 64 (2): 159–65. Russia.
  27. Hillyard SA, Vogel EK, Luck SJ. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc L. B Biol Sci. 1998; 353 (1373): 1257–70.
  28. Zhang B, Stevenson SS, Cheng H, Laron M, Kumar G, Tong J, et al. Effects of fixation instability on multifocal VEP (mfVEP) responses in amblyopes. Journal of Vision. 2008; 8 (3): 16.
  29. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 2007; 118 (10): 2128–48.
  30. Zhang Y, Zhou G, Zhao Q, Jin J, Wang X, Cichocki A. SpatialTemporal Discriminant Analysis for ERP-Based Brain-Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2013; 21 (2): 233–43.