ORIGINAL RESEARCH

Apoptosis of granulosa cells in women with impaired reproductive function and extragenital pathology

Rogova LN1, Lipov DS1, Perfilova VN2, Kustova MV1, Mukhina AV3, Churzin DA1
About authors

1 Volgograd State Medical University of the Ministry of Health of the Russian Federation, Volgograd, Russia

2 Innovative Medicines R&D and Piloting Center, Volgograd, Russia

3 Department of Assisted Reproductive Technologies. Multidisciplinary Clinic No. 1, Volgograd, Russia

Correspondence should be addressed: Danil S. Lipov
Vysokaya, 18a, Volgograd, 400127, Russia; ur.xednay@vopillinad

About paper

Author contribution: LN Rogova — study planning, data analysis and interpretation; DS Lipov — manuscript authoring, analysis of the study data; VN Perfilova, MV Kustova — determination of the level of apoptosis in granulosa cells by flow cytometry; AV Mukhina — collection of the granulosa cell samples from patients; DA Churzin — analysis of the published papers, statistical processing of the obtained data.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Volgograd State Medical University (Minutes № 2021/053 of May 27, 2021) and conducted in compliance with the ethics principles of the WMA Declaration of Helsinki (2000). All donors have voluntarily signed the participant consent forms.

Received: 2023-05-12 Accepted: 2023-06-07 Published online: 2023-06-17
|
  1. Chih HJ, Elias FTS, Gaudet L, Velez MP. Assisted reproductive technology and hypertensive disorders of pregnancy: systematic review and meta-analyses. BMC Pregnancy and Childbirth. 2021; 21: 449.
  2. Sandakova EA, Osipovich OA, Godovalov AP, Karpunina TI. Ehffektivnost' vspomogatel'nyh reproduktivnyh tehnologij u zhenshhin s ginekologicheskimi i ehkstragenital'nymi vospalitel'nymi zabolevaniyami v anamneze. Medicinskij al'manah. 2017; 6 (51): 69–72. Russian.
  3. Anjos JGGD, Carvalho NS, Saab KA, Araujo E, Kulak J. Evaluation of the Seroprevalence of Infectious Diseases in 2,445 in vitro Fertilization Cycles. Revista brasileira de ginecologia e obstetricia: revista da Federacao Brasileira das Sociedades de Ginecologia e Obstetricia. 2021; 43 (3): 216–9.
  4. Heber MF, Ptak GE. The effects of assisted reproduction technologies on metabolic health and disease. Biology of Reproduction. 2021; 104 (4): 734–44.
  5. King ML. Molecular control of oogenesis: Progress and perspectives. Trends in Endocrinology and Metabolism. 2017; 28 (2): 97–107.
  6. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction, Fertility and Development. 2010; 22 (5): 393–9.
  7. Hsueh AJ, Ortega MV. Oocyte development: The role of gonadotropins. Seminars in Reproductive Medicine. 2015; 33 (4): 196–206.
  8. Richards JS, Pangas SA. The ovary: Basic biology and clinical implications. Journal of Clinical Investigation. 2010; 120 (4): 963–72.
  9. El-Hayek S, Demeestere I, Clarke HJ, Scott RT. In vitro growth of human follicles: Past, present, and future. Journal of Assisted Reproduction and Genetics. 2018; 35 (4): 571–88.
  10. Turathum B, Gao EM, Chian RC. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells. 2021; 2-10 (9): 2292.
  11. Jagarlamudi K, Adhikari D. Oocyte-somatic cell communication in reproductive health and disease. Development. 2010; 137 (18): 2927–34.
  12. Zheng Y, Ma L, Liu N, Tang X, Guo S, Zhang B, et al. Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells During Follicular Development. Animals (Basel). 2019; 10-9 (12): 1111.
  13. Sun C, Zhang F, Li X, Liu Y, Li Q, Li J, et al. Apoptosis induced by patulin in mouse primary Leydig cells through reactive oxygen species-mediated mitochondrial and endoplasmic reticulum stress signaling pathways. Oncotarget. 2010; 7 (29): 44992–5005.
  14. Rogova LN, Lipov DS, Tihaeva KJu, Muhina AV, Kornev AV, Churzin DA. Vliyanie soputstvuyushhej ehkstragenital'noj patologii na uspeshnost' procedur vspomogatel'nyh reproduktivnyh texnologij u zhenshhin (po dannym klinik Volgogradskoj oblasti). Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta. 2023; (1): 92–96. Russian.
  15. Kogan IYu, Gzgzyan AM, Lesik EA. Protokoly stimulyacii yaichnikov v ciklah EhKO: rukovodstvo dlya vrachej. M.: GEhOTAR-Media, 2020; 159 s. Russian.
  16. Fonseca JE, Santos MJ, Canhão H, Choy E. Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun Rev. 2009; 8 (7): 538–42.
  17. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019; 16; 50 (4): 778–95.
  18. Oktay K, Rodriguez-Wallberg KA, Salgado-Moran G. The role of interleukin-8 in the physiology and pathophysiology of the reproductive system. Human Reproduction Update. 2019; 25 (4): 411–28.
  19. Zenkina VG. Znachenie apoptoza v yaichnikah pri razvitii nekotoryh zabolevanij reproduktivnoj sistemy. Fundamental'nye issledovaniya. 2011; 6: 227–30. Russian.
  20. Chechina OE, Biktasova AK, Sazonova EV, Zhukova OB, Proxorenko TS, Krat IV, i dr. Rol' citokinov v redoks-zavisimoj regulyacii apoptoza. Byulleten' sibirskoj mediciny. 2009; 2: 67–72. Russian.
  21. Yang Z, Hong W, Zheng K, Feng J, Hu C, Tan J, et al. Chitosan oligosaccharides alleviate H2O2-stimulated granulosa cell damage via HIF-1α signaling pathway. Oxid Med Cell Longev. 2022; 2022: 4247042.