Copyright: © 2023 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Apoptosis of granulosa cells in women with impaired reproductive function and extragenital pathology

Rogova LN1, Lipov DS1, Perfilova VN2, Kustova MV1, Mukhina AV3, Churzin DA1
About authors

1 Volgograd State Medical University of the Ministry of Health of the Russian Federation, Volgograd, Russia

2 Innovative Medicines R&D and Piloting Center, Volgograd, Russia

3 Department of Assisted Reproductive Technologies. Multidisciplinary Clinic No. 1, Volgograd, Russia

Correspondence should be addressed: Danil S. Lipov
Vysokaya, 18a, Volgograd, 400127, Russia; ur.xednay@vopillinad

About paper

Author contribution: LN Rogova — study planning, data analysis and interpretation; DS Lipov — manuscript authoring, analysis of the study data; VN Perfilova, MV Kustova — determination of the level of apoptosis in granulosa cells by flow cytometry; AV Mukhina — collection of the granulosa cell samples from patients; DA Churzin — analysis of the published papers, statistical processing of the obtained data.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Volgograd State Medical University (Minutes № 2021/053 of May 27, 2021) and conducted in compliance with the ethics principles of the WMA Declaration of Helsinki (2000). All donors have voluntarily signed the participant consent forms.

Received: 2023-05-12 Accepted: 2023-06-07 Published online: 2023-06-17
|
  1. Chih HJ, Elias FTS, Gaudet L, Velez MP. Assisted reproductive technology and hypertensive disorders of pregnancy: systematic review and meta-analyses. BMC Pregnancy and Childbirth. 2021; 21: 449.
  2. Sandakova EA, Osipovich OA, Godovalov AP, Karpunina TI. Ehffektivnost' vspomogatel'nyh reproduktivnyh tehnologij u zhenshhin s ginekologicheskimi i ehkstragenital'nymi vospalitel'nymi zabolevaniyami v anamneze. Medicinskij al'manah. 2017; 6 (51): 69–72. Russian.
  3. Anjos JGGD, Carvalho NS, Saab KA, Araujo E, Kulak J. Evaluation of the Seroprevalence of Infectious Diseases in 2,445 in vitro Fertilization Cycles. Revista brasileira de ginecologia e obstetricia: revista da Federacao Brasileira das Sociedades de Ginecologia e Obstetricia. 2021; 43 (3): 216–9.
  4. Heber MF, Ptak GE. The effects of assisted reproduction technologies on metabolic health and disease. Biology of Reproduction. 2021; 104 (4): 734–44.
  5. King ML. Molecular control of oogenesis: Progress and perspectives. Trends in Endocrinology and Metabolism. 2017; 28 (2): 97–107.
  6. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction, Fertility and Development. 2010; 22 (5): 393–9.
  7. Hsueh AJ, Ortega MV. Oocyte development: The role of gonadotropins. Seminars in Reproductive Medicine. 2015; 33 (4): 196–206.
  8. Richards JS, Pangas SA. The ovary: Basic biology and clinical implications. Journal of Clinical Investigation. 2010; 120 (4): 963–72.
  9. El-Hayek S, Demeestere I, Clarke HJ, Scott RT. In vitro growth of human follicles: Past, present, and future. Journal of Assisted Reproduction and Genetics. 2018; 35 (4): 571–88.
  10. Turathum B, Gao EM, Chian RC. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells. 2021; 2-10 (9): 2292.
  11. Jagarlamudi K, Adhikari D. Oocyte-somatic cell communication in reproductive health and disease. Development. 2010; 137 (18): 2927–34.
  12. Zheng Y, Ma L, Liu N, Tang X, Guo S, Zhang B, et al. Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells During Follicular Development. Animals (Basel). 2019; 10-9 (12): 1111.
  13. Sun C, Zhang F, Li X, Liu Y, Li Q, Li J, et al. Apoptosis induced by patulin in mouse primary Leydig cells through reactive oxygen species-mediated mitochondrial and endoplasmic reticulum stress signaling pathways. Oncotarget. 2010; 7 (29): 44992–5005.
  14. Rogova LN, Lipov DS, Tihaeva KJu, Muhina AV, Kornev AV, Churzin DA. Vliyanie soputstvuyushhej ehkstragenital'noj patologii na uspeshnost' procedur vspomogatel'nyh reproduktivnyh texnologij u zhenshhin (po dannym klinik Volgogradskoj oblasti). Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta. 2023; (1): 92–96. Russian.
  15. Kogan IYu, Gzgzyan AM, Lesik EA. Protokoly stimulyacii yaichnikov v ciklah EhKO: rukovodstvo dlya vrachej. M.: GEhOTAR-Media, 2020; 159 s. Russian.
  16. Fonseca JE, Santos MJ, Canhão H, Choy E. Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun Rev. 2009; 8 (7): 538–42.
  17. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019; 16; 50 (4): 778–95.
  18. Oktay K, Rodriguez-Wallberg KA, Salgado-Moran G. The role of interleukin-8 in the physiology and pathophysiology of the reproductive system. Human Reproduction Update. 2019; 25 (4): 411–28.
  19. Zenkina VG. Znachenie apoptoza v yaichnikah pri razvitii nekotoryh zabolevanij reproduktivnoj sistemy. Fundamental'nye issledovaniya. 2011; 6: 227–30. Russian.
  20. Chechina OE, Biktasova AK, Sazonova EV, Zhukova OB, Proxorenko TS, Krat IV, i dr. Rol' citokinov v redoks-zavisimoj regulyacii apoptoza. Byulleten' sibirskoj mediciny. 2009; 2: 67–72. Russian.
  21. Yang Z, Hong W, Zheng K, Feng J, Hu C, Tan J, et al. Chitosan oligosaccharides alleviate H2O2-stimulated granulosa cell damage via HIF-1α signaling pathway. Oxid Med Cell Longev. 2022; 2022: 4247042.