ORIGINAL RESEARCH

Estimation of diffusion chamber biocompatibility in the experimental model of implantation in the neurovascular bundle

Marzol EA, Dvornichenko MV, Mitryaikin NS, Aparshev NA
About authors

Siberian State Medical University, Tomsk, Russia

Correspondence should be addressed: Ekaterina A. Marzol
Kartashova, 29b, kv. 78, Tomsk, 634 041; ur.liam@3084aytaK

About paper

Funding: the study was supported by the RSF (research project No. 23-25-00346).

Author contribution: Marzol EA, Dvornichenko MV — developing concept and design; Marzol EA, Aparshev NA, Mitryaikin NS — data analysis and interpretation; Marzol EA, Mitryaikin NS, Dvornichenko MV — substantiation of manuscript or verification of critical intellectual content; Dvornichenko MV — final approval of manuscript before publishing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Siberian State Medical University (protocol No. CDI-005 dated 5 February 2022). Animals were handled in accordance with the Directive 2010/63/EU of the European Parliament and the Council on the protection of animals used for scientific purposes dated 22 September 2010, rules and regulations of the European Community (86/609EEC), Declaration of Helsinki, and orders of the Ministry of Health of the USSR (No. 742 dated 13 November 1984 and No. 48 dated 23 January 1985).

Received: 2024-06-27 Accepted: 2024-07-21 Published online: 2024-08-19
|
  1. Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable membranes for guided bone regeneration: critical features, potentials, and limitations. ACS Mater Au. 2023; 3 (5): 394–417. PMID: 38089090; PMCID: PMC10510521.
  2. Tan RP, Chan AHP, Wei S, Santos M, Lee BSL, Filipe EC, et al. Bioactive materials facilitating targeted local modulation of inflammation. JACC Basic Transl Sci. 2019; 4 (1): 56–71. PMID: 30847420; PMCID: PMC6390730.
  3. Chen Tingting, Cai Tongjiang, Jin Qiao, Ji Jian. Design and fabrication of functional polycaprolactone. E-Polymers. 2015; 15 (1): 3–13.
  4. Mkhabela Vuyiswa, Sinha Ray Suprakas. Poly(ε-caprolactone) nanocomposite scaffolds for tissue engineering: A brief overview. Journal of nanoscience and nanotechnology. 2014; 14 (1): 535–45.
  5. Liu Fengyuan, Vyas Cian, Poologasundarampillai Gowsihan, Pape Ian, Hinduja Srichand, Mirihanage Wajira, Bartolo Paulo. Structural evolution of PCL during melt extrusion 3D printing. Macromolecular Materials and Engineering. 2017; 303 (2): 1700494.
  6. Lebedeva AI, Maraeva EV. Osnovnye tendencii sozdanija kompozitnyh 3d-skaffoldov na osnove polikaprolaktona i gidroksiapatita. Nauka nastojashhego i budushhego. 2021; (1): 98–101. Russian.
  7. Kazanceva EA. Konstruirovanie i ocenka jeffektivnosti sistem kontroliruemoj dostavki sel'skohozjajstvennyh preparatov razlichnogo dejstvija [dissertacija]. Krasnojarsk, 2018. Russian.
  8. Homenjuk S. V. Morfologija regeneratornyh processov pri implantacii kollagenovogo materiala s adsorbirovannymi mul'tipotentnymi stromal'nymi kletkami [dissertacija]. Novosibirsk, 2023. Russian.
  9. Emily Archer, Marissa Torretti, Samy Madbouly. Biodegradable polycaprolactone (PCL) based polymer and composites. Physical Sciences Reviews. 2021; (8): 4391–414. Available from: https://doi.org/10.1515/psr-2020-0074.
  10. Xiang Z, Guan X, Ma Z, Shi Q, Panteleev M, Ataullakhanov FI. Bioactive engineered scaffolds based on PCL-PEG-PCL and tumor cell-derived exosomes to minimize the foreign body reaction. Biomater Biosyst. 2022; 6 (7): 100055. DOI: 10.1016/j.bbiosy.2022.100055. PMID: 36824486; PMCID: PMC9934494.
  11. Luo L, He Y, Chang Q, Xie G, Zhan W, Wang X, et al. Polycaprolactone nanofibrous mesh reduces foreign body reaction and induces adipose flap expansion in tissue engineering chamber. Int J Nanomedicine. 2016; 12 (11): 6471–83. DOI: 10.2147/IJN.S114295. PMID: 27980405; PMCID: PMC5147407.
  12. Fairag R, Li L, Ramirez-GarciaLuna JL, Taylor MS, Gaerke B, Weber MH, et al. A composite lactide-mineral 3D-printed scaffold for bone repair and regeneration. Front Cell Dev Biol. 2021; 7 (9): 654518. DOI: 10.3389/fcell.2021.654518. PMID: 34307346; PMCID: PMC8299729.
  13. Prabhath A, Vernekar VN, Vasu V, Badon M, Avochinou JE, Asandei AD, et al. Kinetic degradation and biocompatibility evaluation of polycaprolactone-based biologics delivery matrices for regenerative engineering of the rotator cuff. J Biomed Mater Res A. 2021; 109 (11): 2137–53. DOI: 10.1002/jbm.a.37200. Epub 2021 May 11. PMID: 33974735; PMCID: PMC8440380.
  14. Duda S, Dreyer L, Behrens P, Wienecke S, Chakradeo T, Glasmacher B, et al. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides. Biomed Res Int. 2014; 2014: 835269. DOI: 10.1155/2014/835269. Epub 2014 Apr 9. PMID: 24818158; PMCID: PMC4000981.
  15. Bereshhenko VV, Nadyrov JeA, Lyzikov AN, Petrenjov DR, Kondrachuk AN. Tkanevye reakcii podkozhnoj kletchatki v otvet na implantaciju polipropilenovogo jendoproteza, modificirovannogo rastvorom polikaprolaktona metodom jelektrospinninga. Problemy zdorov'ja i jekologii. 2020; 1: 65–71. Russian.
  16. Cygankov JuM, Sergeev AA, Zhorzholiani ShT, Shepelev AD, Krasheninnikov SV, Tenchurin TH, i dr. Vlijanie biomehanicheskoj sovmestimosti i trombogennosti novogo sinteticheskogo sosudistogo proteza na ego integraciju v arterial'noe ruslo (jeksperimental'noe issledovanie). Nauki o zhizni. 2021; (500): 466–9. DOI: 10.31857/S2686738921050309. Russian.
  17. Mishanin AI, Panina AN, Bol'basov EN, Tverdohlebov SI, Golovkin AS. Biosovmestimost' skaffoldov iz smesej i sopolimerov polikaprolaktona i polimolochnoj kisloty v testah s mezenhimal'nymi stvolovymi kletkami. Transljacionnaja medicina. 2021; 8 (5): 38–49. DOI: 10.18705/2311-4495-2021-8-5-38-49. Russian.
  18. Pankajakshan D, Krishnan VK, Krishnan LK. Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold. J Tissue Eng Regen Med. 2007; 1 (5): 389–97. DOI: 10.1002/term.48. PMID: 18038433.
  19. Ivanov AN, Chibrikova JuA, Saveleva MS, Rogozhina AS, Norkin IA. Ocenka biosovmestimosti polikaprolaktonovyh skaffoldov, obespechivajushhih adresnuju dostavku shhelochnoj fosfatazy. Citologija. 2020; 62 (12): 903–12. DOI 10.31857/S0041377120120032. Russian.
  20. Bogdanov LA, Kutihin AG. Optimizacija okrashivanija jelementov sistemy krovoobrashhenija i gepatolienal'noj sistemy gematoksilinom i jeozinom. Fundamental'naja i klinicheskaja medicina. 2019; 4 (4): 70–77. Russian.
  21. Novickij VV, Urazova OI. Patofizilogija. M.: Izd-vo «GJeOTARMedia», 2022; T. 2: 592 s. Russian.
  22. Chunpeng Nie Yan Yu. Cirrhosis: pathogenesis and complications, 2022. Calgary: The Calgary guide to understanding disease; c2024 [cited 2024 March 22]. Available from: https://calgaryguide.ucalgary.ca/cirrhosis-pathogenesis-and-complications/.
  23. Yunfu Lv, Wan Yee Lau, Yejuan Li, Jie Deng, Xiaoyu Han, Xiaoguang Gong, et al. Hypersplenism: History and current status. Exp Ther Med. 2016; 12 (4): 2377–82. DOI: 10.3892/etm.2016.3683.
  24. Yasuko Iwakiri. Pathophysiology of portal hypertension. Clin Liver Dis. 2014; 18 (2): 281–91. DOI: 10.1016/j.cld.2013.12.001.
  25. Dane Richard, Robin Bessemer. Nephritic syndrome: pathogenesis and clinical finding, 2016. Calgary: The Calgary guide to understanding disease; c2024 [cited 2024 March 22]. Available from: https://calgaryguide.ucalgary.ca/nephritic-syndrome-pathogenesis-and-clinical-findings/.
  26. Kyle Moxham. Primary aldosteronism: pathogenesis and clinical findings, 2021. Calgary: The Calgary guide to understanding disease; c2024 [cited 2024 March 23]. Available from: https://calgaryguide.ucalgary.ca/primary-aldosteronism-pathogenesis-and-clinical-findings/.
  27. Samin Dolatabadi, Yan Yu. Hypercortisolemia (Cushing’s syndrome): clinical findings, 2021. Calgary: The Calgary guide to understanding disease; c2024 [cited 2024 March 23]. Available from: https://calgaryguide.ucalgary.ca/hypercortisolemia-cushings-syndrome-clinical-findings/.
  28. Tan L, Xu X, Song J, Luo F, Qian Z. Synthesis, characterization, and acute oral toxicity evaluation of pH-sensitive hydrogel based on MPEG, poly(ε-caprolactone), and itaconic acid. Biomed Res Int. 2013; 2013: 239838. DOI: 10.1155/2013/239838. Epub 2013 Nov 30. PMID: 24364030; PMCID: PMC3864077.
  29. Galashina EA, Chibrikova JuA, Ivanov AN, Gladkova EV, Norkin IA. Biohimicheskie parametry intensivnosti sistemnoj vospalitel'noj reakcii v ocenke biosovmestimosti skaffoldov na osnove polikaprolaktona i vaterita. Vestnik medicinskogo instituta «Reaviz». 2020; 2: 98–103. Russian.
  30. Kosjakova GP, Muslimov AA, Lysenko AI. Vzaimodejstvie immunnoj i nervnoj sistem pri primenenii PCI-skaffoldov v cheljustno-licevoj hirurgii. Medicinskij akademicheskij zhurnal. 2019; 19 (1): 82–84. Russian.