
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).
ORIGINAL RESEARCH
Morphofunctional state of cryopreserved blood cells at moderate low temperature
1 North Caucasus Federal University, Stavropol, Russia
2 Stavropol State Medical University, Stavropol, Russia
Correspondence should be addressed: Alexander A. Vlasov
Pushkina, 1, Stavropol, 355017, Russia; ur.ufcn@vosalva
Author contribution: Vlasov АА — study concept, procedure, interpretation of the results; Andrusenko SF — study design, literature review, manuscript writing; Denisova EV, Kadanova AA, Sokulskaya NN — data acquisition; Elkanova AB, Melchenko ЕА — data processing; Domenyuk DA — manuscript editing.
Compliance with ethical standards: the study was approved by the Ethics Committee of the North Caucasus Federal University (protocol No. 002 dated 11 July 2024); all subjects submitted the informed concent to participation in the study.
- Hidi L, Komorowicz E, Kovács GI, Szeberin Z, Garbaisz D, Nikolova N, et al. Cryopreservation moderates the thrombogenicity of arterial allografts during storage. PLoS One. 2021; 16 (7): e0255114. Available from: https://doi.org/10.1371/journal.pone.0255114.
- Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, et al. Winter is coming: the future of cryopreservation. BMC Biol 19. 2021; 56. Available from: https://doi.org/10.1186/s12915-021-00976-8.
- Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, at al. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative medicine. 2020; 15 (3): 1463–91. DOI: 10.2217/rme-2019-0145.
- Liu X, Pan Y, Liu F, He Y, Zhu Q, Liu Z, at al. A review of the material characteristics, antifreeze mechanisms, and applications of cryoprotectants (CPAs). Journal of Nanomaterials. 2021; 2021. Available from: doi.org/10.1155/2021/9990709.
- Zaikina EV, Goncharova AS, Pozdnyakova VV, Pandova OV, Przhedeckij YuV, Volovik V. G, i dr. Obzor sovremennyh metodov kriokonservacii razlichnyh vidov biologicheskogo materiala. Sovremennye problemy nauki i obrazovanija. 2022; 4. Доступно по ссылке: https://science-education.ru/ru/article/view?id=31790. Russian.
- Silyukova YuL, Stanishevskaja OI, Pleshanov NV, Kurochkin AA. Jeffektivnost' ispol'zovanija kombinacij saharidov v sredah dlja kriokonservacii spermy petuhov. Sel'skohozjajstvennaja biologija. 2020; 55 (6): 1148–58. DOI: 10.15389/agrobiology.2020.6.1148rus. Russian.
- Jahan S, Kaushal R, Pasha R, Pineault N. Current and future perspectives for the cryopreservation of cord blood stem cells. Transfus Med Rev. 2021; 35 (2): 95–102. DOI: 10.1016/j.tmrv.2021.01.003. PMID: 33640254.
- Tas RP, Sampaio-Pinto V, Wennekes T, van Laake LW, Voets IK. From the freezer to the clinic: Antifreeze proteins in the preservation of cells, tissues, and organs. 2021; 22 (3): 52162. DOI: 10.15252/embr.202052162. PMID: 33586846; PMCID: PMC7926221.
- Whaley D, Damyar K, Witek RP, Mendoza A, Alexander M, Lakey JR. Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplant. 2021; 30: 963689721999617. DOI: 10.1177/0963689721999617. PMID: 33757335; PMCID: PMC7995302.
- Li J, Wang H, Wang L, et al. Stabilization effects of saccharides in protein formulations: A review of sucrose, trehalose, cyclodextrins and dextrans. Eur J Pharm Sci. 2024; 192: 106625. DOI: 10.1016/j.ejps.2023.106625. Epub 2023 Nov 2. PMID: 37918545.
- Zhong Y, McGrath JK, Gong B. Dipropinonates of sugar alcohols as water-soluble, nontoxic CPAs for DMSO-Free cell cryopreservation. ACS Biomater Sci Eng. 2021; 7 (10): 4757–62. DOI: 10.1021/acsbiomaterials.1c00995. PMID: 34587440.
- Shirokih IG, Polezhaeva TV, Shirokih AA, Hudyakov AN, Sergushkina MI, Nazarova YaI, i dr. Kriozashhitnye svojstva polisaharidsoderzhashhej frakcii Hericium erinaceus BP 16. Izvestija RAN. Serija biologicheskaja. 2020; 1: 5–11. DOI: 10.31857/S0002332920010129. Russian.
- Olsson C, Swenson J. Structural comparison between sucrose and trehalose in aqueous solution. J Phys Chem B. 2020; 124 (15): 3074–82. DOI: 10.1021/acs.jpcb.9b09701. PMID: 32223195; PMCID: PMC7311057.
- Janis BR, Priddy MC, Otto MR, Kopechek JA, Menze MA. Sonoporation enables high-throughput loading of trehalose into red blood cells. Cryobiology. 2021; 98: 73–79. DOI: 10.1016/j.cryobiol.2020.12.005. PMID: 33359645.
- Xu B, Wang Z, Wang R, Song G, Zhang Y, Su R, at al. Metabolomics analysis of buck semen cryopreserved with trehalose. Front Genet. 2022; 13: 938622. DOI: 10.3389/fgene.2022.938622. PMID: 35991557; PMCID: PMC9386307.
- Yao J, Shen L, Chen Z, Zhang B, Zhao G. Hydrogel microencapsulation enhances cryopreservation of red blood cells with trehalose. ACS Biomater Sci Eng. 2022; 8 (5): 2066–75. DOI: 10.1021/acsbiomaterials.2c00051. PMID: 35394755.
- Murray A, Congdon TR, Tomás RMF, Kilbride P, Gibson MI. Red blood cell cryopreservation with minimal post-thaw lysis enabled by a synergistic combination of a cryoprotecting polyampholyte with DMSO/Trehalose. Biomacromolecules. 2022; 23 (2): 467–77. DOI: 10.1021/acs.biomac.1c00599. PMID: 34097399; PMCID: PMC7612374.
- Ryabceva SA, Hramcov AG, Budkevich RO, Anisimov GS, Chuklo AO, Shpak MA. Fiziologicheskie jeffekty, mehanizmy dejstvija i primenenie laktulozy. Voprosy pitanija. 2020; 89 (2): 5–20. DOI: 10.24411/0042-8833-2020-10012. Russian.
- Shpak M, Ryabtseva S, Bratsikhin А. Lactulose effеct on viability of starter cultures. Journal of Hygienic Engineering and Design. 2019; 27: 162–7.
- Killer J, Bunešová VN, Modráčková N, Vlková E, Pechar R, Šplíchal I. Lactulose in combination with soybean lecithin has a cryoprotective effect on probiotic taxa of bifidobacteria and Lactobacillaceae. Lett Appl Microbiol. 2023; 76 (2): ovad008. DOI: 10.1093/lambio/ovad008. PMID: 36657381.
- Dayal R, Beyls E, Vral A, et al. The micronucleus assay on cryopreserved whole blood. J Vis Exp. 2024; 204. DOI: 10.3791/65855. PMID: 38465937.
- Blackwell AD, Garcia AR, Keivanfar RL, et al. A field method for cryopreservation of whole blood from a finger prick for later analysis with flow cytometry. Am J Phys Anthropol. 2021; 174 (4): 670–85. DOI: 10.1002/ajpa.24251. Epub 2021 Feb 17. PMID: 33595836.
- Kit OI, Gnennaya NV, Filippova SYu, Chembarova TV, Lysenko IB, Novikova IA, i dr. Kriokonservacija gemopojeticheskih stvolovyh kletok perifericheskoj krovi v transplantologii: sovremennoe sostojanie i perspektivy. Kardiovaskuljarnaja terapija i profilaktika. 2023; 22 (11): 3691. DOI: 10.15829/1728-8800-2023-3691. EDN YTCTTM. Russian.
- Kiryanova GYu, Volkova SD, Kasyanov AD, Grishina GV, Golovanova IS, Chechetkin AV. Kriokonservirovanie jeritrocitov pri temperaturah –40 S i –80 S. Vestnik mezhdunarodnoj akademii holoda. 2017; 1: 72–78. DOI: 10.21047/1606-4313-2017-16-1-72-78. Russian.
- Isaeva NV, Minaeva NV, Utemov SV, Sherstnev FS, Zorina NA, Zmeeva YuS, i dr. Zhiznesposobnost' jadrosoderzhashhih kletok v lejkokoncentratah na jetapah ih poluchenija, zamorazhivanija i dekriokonservirovanija. Bjulleten' sibirskoj mediciny. 2023; 22 (2): 46–52. Available from: https://doi.org/10.20538/1682-0363-2023-2-46-52. Russian.
- Vetoshkin KA, Utemov SV, Sherstnev FS, Knyazev MG, Kostjaev AA. Rezul'taty kriokonservirovanija donorskih trombocitnyh koncentratov pri nizkih i ul'tranizkih temperaturah. Transfuziologija. 2015. 2 (16): 22–27. Russian.