ORIGINAL RESEARCH

Morphofunctional state of cryopreserved blood cells at moderate low temperature

Vlasov AA1, Andrusenko SF1, Denisova EV1, Elkanova AB1, Kadanova AA1, Melchenko EA1, Sokulskaya NN1, Domenyuk DA2
About authors

1 North Caucasus Federal University, Stavropol, Russia

2 Stavropol State Medical University, Stavropol, Russia

Correspondence should be addressed: Alexander A. Vlasov
Pushkina, 1, Stavropol, 355017, Russia; ur.ufcn@vosalva

About paper

Author contribution: Vlasov АА — study concept, procedure, interpretation of the results; Andrusenko SF — study design, literature review, manuscript writing; Denisova EV, Kadanova AA, Sokulskaya NN — data acquisition; Elkanova AB, Melchenko ЕА — data processing; Domenyuk DA — manuscript editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the North Caucasus Federal University (protocol No. 002 dated 11 July 2024); all subjects submitted the informed concent to participation in the study.

Received: 2024-07-17 Accepted: 2024-08-25 Published online: 2024-09-17
|
  1. Hidi L, Komorowicz E, Kovács GI, Szeberin Z, Garbaisz D, Nikolova N, et al. Cryopreservation moderates the thrombogenicity of arterial allografts during storage. PLoS One. 2021; 16 (7): e0255114. Available from: https://doi.org/10.1371/journal.pone.0255114.
  2. Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, et al. Winter is coming: the future of cryopreservation. BMC Biol 19. 2021; 56. Available from: https://doi.org/10.1186/s12915-021-00976-8.
  3. Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, at al. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative medicine. 2020; 15 (3): 1463–91. DOI: 10.2217/rme-2019-0145.
  4. Liu X, Pan Y, Liu F, He Y, Zhu Q, Liu Z, at al. A review of the material characteristics, antifreeze mechanisms, and applications of cryoprotectants (CPAs). Journal of Nanomaterials. 2021; 2021. Available from: doi.org/10.1155/2021/9990709.
  5. Zaikina EV, Goncharova AS, Pozdnyakova VV, Pandova OV, Przhedeckij YuV, Volovik V. G, i dr. Obzor sovremennyh metodov kriokonservacii razlichnyh vidov biologicheskogo materiala. Sovremennye problemy nauki i obrazovanija. 2022; 4. Доступно по ссылке: https://science-education.ru/ru/article/view?id=31790. Russian.
  6. Silyukova YuL, Stanishevskaja OI, Pleshanov NV, Kurochkin AA. Jeffektivnost' ispol'zovanija kombinacij saharidov v sredah dlja kriokonservacii spermy petuhov. Sel'skohozjajstvennaja biologija. 2020; 55 (6): 1148–58. DOI: 10.15389/agrobiology.2020.6.1148rus. Russian.
  7. Jahan S, Kaushal R, Pasha R, Pineault N. Current and future perspectives for the cryopreservation of cord blood stem cells. Transfus Med Rev. 2021; 35 (2): 95–102. DOI: 10.1016/j.tmrv.2021.01.003. PMID: 33640254.
  8. Tas RP, Sampaio-Pinto V, Wennekes T, van Laake LW, Voets IK. From the freezer to the clinic: Antifreeze proteins in the preservation of cells, tissues, and organs. 2021; 22 (3): 52162. DOI: 10.15252/embr.202052162. PMID: 33586846; PMCID: PMC7926221.
  9. Whaley D, Damyar K, Witek RP, Mendoza A, Alexander M, Lakey JR. Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplant. 2021; 30: 963689721999617. DOI: 10.1177/0963689721999617. PMID: 33757335; PMCID: PMC7995302.
  10. Li J, Wang H, Wang L, et al. Stabilization effects of saccharides in protein formulations: A review of sucrose, trehalose, cyclodextrins and dextrans. Eur J Pharm Sci. 2024; 192: 106625. DOI: 10.1016/j.ejps.2023.106625. Epub 2023 Nov 2. PMID: 37918545.
  11. Zhong Y, McGrath JK, Gong B. Dipropinonates of sugar alcohols as water-soluble, nontoxic CPAs for DMSO-Free cell cryopreservation. ACS Biomater Sci Eng. 2021; 7 (10): 4757–62. DOI: 10.1021/acsbiomaterials.1c00995. PMID: 34587440.
  12. Shirokih IG, Polezhaeva TV, Shirokih AA, Hudyakov AN, Sergushkina MI, Nazarova YaI, i dr. Kriozashhitnye svojstva polisaharidsoderzhashhej frakcii Hericium erinaceus BP 16. Izvestija RAN. Serija biologicheskaja. 2020; 1: 5–11. DOI: 10.31857/S0002332920010129. Russian.
  13. Olsson C, Swenson J. Structural comparison between sucrose and trehalose in aqueous solution. J Phys Chem B. 2020; 124 (15): 3074–82. DOI: 10.1021/acs.jpcb.9b09701. PMID: 32223195; PMCID: PMC7311057.
  14. Janis BR, Priddy MC, Otto MR, Kopechek JA, Menze MA. Sonoporation enables high-throughput loading of trehalose into red blood cells. Cryobiology. 2021; 98: 73–79. DOI: 10.1016/j.cryobiol.2020.12.005. PMID: 33359645.
  15. Xu B, Wang Z, Wang R, Song G, Zhang Y, Su R, at al. Metabolomics analysis of buck semen cryopreserved with trehalose. Front Genet. 2022; 13: 938622. DOI: 10.3389/fgene.2022.938622. PMID: 35991557; PMCID: PMC9386307.
  16. Yao J, Shen L, Chen Z, Zhang B, Zhao G. Hydrogel microencapsulation enhances cryopreservation of red blood cells with trehalose. ACS Biomater Sci Eng. 2022; 8 (5): 2066–75. DOI: 10.1021/acsbiomaterials.2c00051. PMID: 35394755.
  17. Murray A, Congdon TR, Tomás RMF, Kilbride P, Gibson MI. Red blood cell cryopreservation with minimal post-thaw lysis enabled by a synergistic combination of a cryoprotecting polyampholyte with DMSO/Trehalose. Biomacromolecules. 2022; 23 (2): 467–77. DOI: 10.1021/acs.biomac.1c00599. PMID: 34097399; PMCID: PMC7612374.
  18. Ryabceva SA, Hramcov AG, Budkevich RO, Anisimov GS, Chuklo AO, Shpak MA. Fiziologicheskie jeffekty, mehanizmy dejstvija i primenenie laktulozy. Voprosy pitanija. 2020; 89 (2): 5–20. DOI: 10.24411/0042-8833-2020-10012. Russian.
  19. Shpak M, Ryabtseva S, Bratsikhin А. Lactulose effеct on viability of starter cultures. Journal of Hygienic Engineering and Design. 2019; 27: 162–7.
  20. Killer J, Bunešová VN, Modráčková N, Vlková E, Pechar R, Šplíchal I. Lactulose in combination with soybean lecithin has a cryoprotective effect on probiotic taxa of bifidobacteria and Lactobacillaceae. Lett Appl Microbiol. 2023; 76 (2): ovad008. DOI: 10.1093/lambio/ovad008. PMID: 36657381.
  21. Dayal R, Beyls E, Vral A, et al. The micronucleus assay on cryopreserved whole blood. J Vis Exp. 2024; 204. DOI: 10.3791/65855. PMID: 38465937.
  22. Blackwell AD, Garcia AR, Keivanfar RL, et al. A field method for cryopreservation of whole blood from a finger prick for later analysis with flow cytometry. Am J Phys Anthropol. 2021; 174 (4): 670–85. DOI: 10.1002/ajpa.24251. Epub 2021 Feb 17. PMID: 33595836.
  23. Kit OI, Gnennaya NV, Filippova SYu, Chembarova TV, Lysenko IB, Novikova IA, i dr. Kriokonservacija gemopojeticheskih stvolovyh kletok perifericheskoj krovi v transplantologii: sovremennoe sostojanie i perspektivy. Kardiovaskuljarnaja terapija i profilaktika. 2023; 22 (11): 3691. DOI: 10.15829/1728-8800-2023-3691. EDN YTCTTM. Russian.
  24. Kiryanova GYu, Volkova SD, Kasyanov AD, Grishina GV, Golovanova IS, Chechetkin AV. Kriokonservirovanie jeritrocitov pri temperaturah –40 S i –80 S. Vestnik mezhdunarodnoj akademii holoda. 2017; 1: 72–78. DOI: 10.21047/1606-4313-2017-16-1-72-78. Russian.
  25. Isaeva NV, Minaeva NV, Utemov SV, Sherstnev FS, Zorina NA, Zmeeva YuS, i dr. Zhiznesposobnost' jadrosoderzhashhih kletok v lejkokoncentratah na jetapah ih poluchenija, zamorazhivanija i dekriokonservirovanija. Bjulleten' sibirskoj mediciny. 2023; 22 (2): 46–52. Available from: https://doi.org/10.20538/1682-0363-2023-2-46-52. Russian.
  26. Vetoshkin KA, Utemov SV, Sherstnev FS, Knyazev MG, Kostjaev AA. Rezul'taty kriokonservirovanija donorskih trombocitnyh koncentratov pri nizkih i ul'tranizkih temperaturah. Transfuziologija. 2015. 2 (16): 22–27. Russian.