ORIGINAL RESEARCH

Neuroimaging approach to identification of working memory biomarkers in patients with chronic cerebral ischemia

About authors

Research Center of Neurology, Moscow, Russia

Correspondence should be addressed: Vitaly F. Fokin
Volokolamskoye shosse 80, Moscow, 125367, Russia; ur.liam@fvf

About paper

Funding: the study was supported by the RSF grant (No. 22-15-00448).

Author contribution: Fokin VF — manuscript writing; Ponomareva NV — design of physiological and neuropsychological tests, general study design; Konovalov RN — neuroimaging test design; Medvedev RB — Doppler tests; Boravova AI — psychophysiological tests; Lagoda OV — clinical tests; Krotenkova MV — neuroimaging test management; Tanashyan MM — clinical test management, general study design.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Research Center of Neurology (protocol No. 5-6/22 dated 1 June 2022). The informed consent was submitted by all study participants.

Received: 2024-08-29 Accepted: 2024-09-16 Published online: 2024-09-30
|
  1. Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0. Neuron. 2018; 100 (2): 463–75. Available from: http://doi:10.1016/j.neuron.2018.09.023.
  2. Goethals I, Audenaert K, Jacobs F, Van De Wiele C, Vermeir G, et al. Toward clinical application of neuropsychological activation probes with SPECT: a spatial working memory task. J Nucl Med. 2002; 43 (11): 1426–31. PMID: 12411543.
  3. Kotyusov AI, Kasanov D, Kosachenko AI, Gashkova AS, Pavlov YG, Malykh S. Working memory capacity depends on attention control, but not selective attention. Behav Sci (Basel). 2023; 13 (2): 92. Available from: http://doi:10.3390/bs13020092. PMID: 36829321; PMCID: PMC9952259.
  4. Klaus K, Pennington K. Dopamine and working memory: genetic variation, stress and implications for mental health. Curr Top Behav Neurosci. 2019; 41: 369–91. Available from: http://doi:10.1007/7854_2019_113. PMID: 31502081.
  5. Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training of working memory. Nat Neurosci. 2004; 7: 75–79. Available from: http://doi:10.1038/nn1165.
  6. Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005; 25 (1): 46–59. Available from: http://doi:10.1002/hbm.20131. PMID: 15846822; PMCID: PMC6871745.
  7. Muoio V, Persson PB, Sendeski MM. Neurovascular unit — an overview of the concept. Acta Physiol (Oxf). 2014; 210 (4): 790–8. Available from: http://doi:10.1111/apha.12250. PMID: 24629161.
  8. Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci. 2021; 24: 1198–209. Available from: https://doi.org/10.1038/s41593-021-00904-7.
  9. Ho C, Russu IM. How much do we know about the Bohr effect of hemoglobin? Biochemistry. 1987; 26 (20): 6299–305. Available from: http://doi:10.1021/bi00394a001. PMID: 3322377.
  10. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006; 7 (1): 41–53. Available from: http://doi:10.1038/nrn1824. PMID: 16371949.
  11. Fokin VF, Ponomareva NV. Jenergeticheskaja fiziologija mozga. M.: Antidor, 2003; 288 s. Russian.
  12. Drew PJ, Mateo C, Turner KL, Yu Xin, Kleinfeld D. Ultra-slow oscillations in fMRI and resting-state connectivity: neuronal and vascular contributions and technical confounds. Neuron. 2020; 107 (5): 782–804. ISSN 0896-6273. Available from: https://doi.org/10.1016/j.neuron.2020.07.020.
  13. Nita DA, Vanhatalo S, Lafortune F-D, Voipio J, Kaila K, Amzica F: Nonneuronal origin of CO2-related DC EEG shifts: an in vivo study in the cat. Journal of Neurophysiology. 2004; 92: 1011–22. Available from: https://doi:10.1152/jn.00110.2004. Epub 2004 Mar 31. PMID: 15056689.
  14. Voipio J, Tallgren P, Heinonen E, Vanhatalo S, Kaila K: Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator. Journal of neurophysiology. 2003, 89: 2208–14. Available from: https://doi:10.1152/jn.00915.2002. Epub 2002 Dec 11. PMID: 12612037.
  15. Ponomareva NV, Selezneva ND, Kolyhalov IV. Nejrofiziologicheskie mehanizmy dejatel'nosti mozga pri bolezni Al'cgejmera. Voprosy gerontopsihiatrii.1991: 107–12. Russian.
  16. Ito T, Kulkarni KR, Schultz DH, et al. Cognitive task information is transferred between brain regions via resting-state network topology. Nat Commun. 2017; 8 (1): 1027. Available from: https://https://doi.org/10.1038/s41467-017-01000-w.
  17. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci USA. 2010; 107 (10): 4734–9. Available from: https://doi:10.1073/pnas.0911855107. Epub 2010 Feb 22. PMID: 20176931; PMCID: PMC2842060.
  18. Jian Li, Yijun Liu, Jessica L. Wisnowski, Richard M. Leahy. Identification of overlapping and interacting networks reveals intrinsic spatiotemporal organization of the human brain. NeuroImage. 2023; 270. Available from: https://doi.org/10.1016/j.neuroimage.2023.119944.
  19. Tanashjan MM, Maksimova MYu, Domashenko MA. Discirkuljatornaja jencefalopatija. Putevoditel' vrachebnyh naznachenij. 2015; 2: 1–25. Russian.
  20. Batysheva TT, Artemova IYu, Vdovichenko TV. Hronicheskaja ishemija mozga: mehanizmy razvitija i sovremennoe kompleksnoe lechenie. Consilium medicum. 2004; 3 (4). Russian.
  21. Zaharov VV, Lokshina AB. Kognitivnye narushenija pri discirkuljatornoj jencefalopatii. RMZh. 2009; 20: 1325–31. Russian.
  22. Morris JC. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatric. 1997; (9 Suppl 1): 173–6.
  23. Blom K, Koek HL, Zwartbol MHT, van der Graaf Y, Kesseler L, Biessels GJ, et al. SMART Study Group. Subjective cognitive decline, brain imaging biomarkers, and cognitive functioning in patients with a history of vascular disease: the SMART-Medea study. Neurobiol Aging. 2019; 84: 33–40. Available from: https://doi:10.1016/j.neurobiolaging.2019.07.011. Epub 2019 Jul 24. PMID: 31479862.
  24. Hiltunen T, Kantola J, Abou Elseoud A, Lepola P, Suominen K, Starck T, et al. Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI. J Neurosci. 2014; 34 (2): 356–62. Available from: https://doi:10.1523/JNEUROSCI.0276-13.2014. PMID: 24403137; PMCID: PMC6608153.
  25. Osaka M, Kaneda M, Azuma M, et al. Capacity differences in working memory based on resting state brain networks. Sci Rep. 2021; 11 (19502). Available from: https://doi.org/10.1038/s41598-021-98848-2.