Copyright: © 2024 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Modified micro test tubes as a promising basis for immobilization of antibodies for immunocapture on the example of SARS-CoV-2

Roubalsky EO1,2, Abdrakhmanova RA1, Baeva GR1, Rubalskaya TS3, Lazko MV1, Poroisky SV1, Shcheblyakov DV4, Favorskaya IV4, Gushchin VA4,5,6
About authors

1 Astrakhan State Medical University, Astrakhan, Russia

2 Russian University of Medicine, Moscow, Russia

3 Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia

4 Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow, Russia

5 Lomonosov Moscow State University, Moscow, Russia

6 Sechenov First Moscow State Medical University, Moscow, Russia

Correspondence should be addressed: Evgeny O. Roubalsky
Bakinskaya, 121, Astrakhan, 414000, Russia; moc.liamg@ykslabur.o.e orp.egahp@ykslabur

About paper

Funding: the study was supported by the Russian Science Foundation grant No. 23-15-20035, https://rscf.ru/project/23-15-20035/

Author contribution: Rubalsky EO, Abdrakhmanova RA, Baeva GR, Rubalskaya TS — experimental procedure involving micro test tubes; Shcheblyakov DV, Favorskaya IA — preparation of monoclonal antibodies; Rubalsky EO, Lazko MV, Poroyskiy SV, Gushchin VA — study design. The authors contributed to the search for and analysis of information, preparation of the draft, and manuscript writing equally.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Astrakhan State Medical University. (protocol No. 7 dated 22 February 2023).

Received: 2024-11-29 Accepted: 2024-12-19 Published online: 2024-12-28
|
  1. Butler JE, Ni L, Nessler R, Joshi KS, Suter M, Rosenberg B, et al. The physical and functional behavior of capture antibodies adsorbed on polystyrene. J Immunol Methods. 1992; 150 (1–2): 77–90. DOI: 10.1016/0022-1759(92)90066-3. PMID: 1613260.
  2. Donald AM. The effect of temperature on crazing mechanisms in polystyrene. J Mater Sci. 1985; 20: 2630–8. DOI: 10.1007/BF00556095.
  3. Sano T, Smith CL, Cantor CR. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science. 1992; 258 (5079): 120–2. DOI: 10.1126/science.1439758. PMID: 1439758.
  4. Gorshkov AS, Pechenkin DV, Kuznecovskij AV, Balakin VA. PCRamplificirovannyj immunoanaliz (immuno-PCR): princip metoda, varianty ispolnenija, vozmozhnosti i perspektivy ispol'zovanija dlja vyjavlenija patogennyh biologicheskih agentov. Vestnik vojsk RHB zashhity. 2021; 5 (4): 366–75. Dostupno po ssylke: https://doi.org/10.35825/2587-5728-2021-5-4-366-375. Russian.
  5. Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. Quantifying and Understanding Well-to-Well Contamination in Microbiome Research. mSystems. 2019; 4 (4): e00186–19. DOI: 10.1128/mSystems.00186-19. PMID: 31239396; PMCID: PMC6593221.
  6. Lou YC, Hoff J, Olm MR, West-Roberts J, Diamond S, Firek BA, et al. Using strain-resolved analysis to identify contamination in metagenomics data. Microbiome. 2023; 11 (1): 36. DOI: 10.1186/s40168-023-01477-2. PMID: 36864482; PMCID: PMC9979413.
  7. Goebel-Stengel M, Stengel A, Taché Y, Reeve JR Jr. The importance of using the optimal plasticware and glassware in studies involving peptides. Anal Biochem. 2011; 414 (1): 38– 46. DOI: 10.1016/j.ab.2011.02.009. Epub 2011 Mar 9. PMID: 21315060; PMCID: PMC3290000.
  8. Wu X, Liu J, Zhang H, Zhou H, Wang W, Ma Y, et al. Immunomolecular assay based on selective virion capture by spike antibody and viral nucleic acid amplification for detecting intact SARS-CoV-2 particles. J Nanobiotechnology. 2022; 20 (1): 399. DOI: 10.1186/s12951-022-01558-8. PMID: 36064407; PMCID: PMC9444083.
  9. Malou N, Raoult D. Immuno-PCR: a promising ultrasensitive diagnostic method to detect antigens and antibodies. Trends Microbiol. 2011; 19 (6): 295–302. DOI: 10.1016/j.tim.2011.03.004. PMID: 21478019.
  10. Favorskaya IA, Shcheblyakov DV, Esmagambetov IB, Dolzhikova IV, Alekseeva IA, Korobkova AI, et al. Single-Domain Antibodies Efficiently Neutralize SARS-CoV-2 Variants of Concern. Front Immunol. 2022; 13: 822159. DOI: 10.3389/fimmu.2022.822159. PMID: 35281053; PMCID: PMC8907979.
  11. Shah M, Woo HG. Omicron: A Heavily Mutated SARS-CoV-2 Variant Exhibits Stronger Binding to ACE2 and Potently Escapes Approved COVID-19 Therapeutic Antibodies. Front Immunol. 2022; 12: 830527. DOI: 10.3389/fimmu.2021.830527. PMID: 35140714; PMCID: PMC8819067.
  12. Pochtovyi AA, Kustova DD, Siniavin AE, Dolzhikova IV, Shidlovskaya EV, Shpakova OG, et al. In Vitro Efficacy of Antivirals and Monoclonal Antibodies against SARS-CoV-2 Omicron Lineages XBB.1.9.1, XBB.1.9.3, XBB.1.5, XBB.1.16, XBB.2.4, BQ.1.1.45, CH.1.1, and CL.1. Vaccines (Basel). 2023; 11 (10): 1533. DOI: 10.3390/vaccines11101533. PMID: 37896937; PMCID: PMC10611309.
  13. Calvaresi V, Wrobel AG, Toporowska J, Hammerschmid D, Doores KJ, Bradshaw RT, et al. Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein. Nat Commun. 2023; 14 (1): 1421. DOI: 10.1038/s41467-023-36745-0. PMID: 36918534; PMCID: PMC10013288.
  14. Reuter N, Chen X, Kropff B, Peter AS, Britt WJ, Mach M, et al. SARS-CoV-2 Spike Protein Is Capable of Inducing Cell-Cell Fusions Independent from Its Receptor ACE2 and This Activity Can Be Impaired by Furin Inhibitors or a Subset of Monoclonal Antibodies. Viruses. 2023; 15 (7): 1500. DOI: 10.3390/v15071500. PMID: 37515187; PMCID: PMC10384293.
  15. Chulanov VP, Shmakov RG, Lioznov DA, Abdulganieva DI, Valishin DA, Grabovsky VM, i dr. Rezoljucija Soveta jekspertov. Nejtralizujushhie monoklonal'nye antitela pri COVID-19 — mesto v terapii ujazvimyh kategorij bol'nyh. Infekcionnye bolezni. 2023; 21 (1): 152–61. DOI: 10.20953/1729-9225-2023-1-152-161. Russian.
  16. Venkatesan G, Kushwaha A, Kumar A, Bora DP, Sasikumar P. An improved visual closed tube Loop mediated isothermal amplification (LAMP) assay for rapid identification of orf virus in sheep and goats. Vet Ital. 2022; 58 (2). DOI: 10.12834/VetIt.2426.15340.2. PMID: 36586114.