Copyright: © 2024 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

ORIGINAL RESEARCH

Estimation of the impact of chronic radiation exposure on telomere loss in women’s T lymphocytes

About authors

Urals Research Center for Radiation Medicine of the Federal Medical Biological Agency, Chelyabinsk, Russia

Correspondence should be addressed: Yana V. Krivoshchapova
Vorovsky, 68А, Chelyabinsk, 454141, Russia; ur.liam@oh_anaY

About paper

Funding: State Assignment of FMBA of Russia, R&D project “Long-term Cytogenetic Effects of Chronic Exposure in Residents of the Southern Urals.

Acknowledgements: the author would like to express sincere gratitude to Yu.R. Akhmadullina, acting head of the Laboratory of Radiation Genetics, for valuable comments.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Urals Research Center for Radiation Medicine (protocol No. 8 dated 19 June 2024). Individuals, who were included into the cytogenetic study, gave the informed consent to blood sampling and further assessment. All forms and questionnaires are stored in the Laboratory of Radiation Genetics of the Urals Research Center for Radiation Medicine.

Received: 2024-10-16 Accepted: 2024-11-13 Published online: 2024-12-13
|
  1. Akleev AV, redaktor. Posledstvija radioaktivnogo zagrjaznenija reki Techa. Cheljabinsk: Kniga, 2016; 400 s. Russian.
  2. Akhmadullina Y. The Composition of Micronuclei in T-Lymphocytes in Women Affected by Chronic Radiation Exposure. Biology Bulletin. 2023; 50: 2986–96.
  3. Shim G, Ricoul M, Hempel WM, et al. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. Mutation Research/Reviews in Mutation Research. 2014; 760: 1–17.
  4. Ljuin B. Geny. M.: BINOM. Laboratorija znanij, 2011; 896 s. Russian.
  5. Vozilova AV, Krivoshhapova JaV. Issledovanie chastoty inversij i kompleksnyh translokacij v T-limfocitah u obluchennyh zhitelej Juzhnogo Urala. Radiacionnaja biologija. Radiojekologija. 2022; 62 (4): 408–15. Russian.
  6. Krivoshhapova JaV. Vlijanie hronicheskogo obluchenija na telomernye uchastki hromosom T-limfocitov perifericheskoj krovi cheloveka. Medicinskaja genetika. 2022; 21 (11): 40–43. Russian.
  7. Muraki K, Nyhan K, Han L, et al. Mechanisms of telomere loss and their consequences for chromosome instability. Front Oncol. 2012; 2: 135.
  8. Gisselsson D, Jonson T, Petersen A, et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA. 2001; 98: 12683–8.
  9. Nakamura AJ, Redon CE, Bonner WM. Telomere-dependent and telomereindependent origins of endogenous DNA damage in tumor cells. Aging. 2009; 1: 212–8.
  10. Mefford HC, Trask BJ. The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet. 2002; 3: 91–102.
  11. M’kacher R, Colicchio B, Marquet V. Telomere aberrations, including telomere loss, doublets, and extreme shortening, are increased in patients with infertility. Fertility and Sterility. 2021; 115 (1): 164–73.
  12. Coluzzi E, Colamartino M, Cozzi R, et al. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One. 2014; 9 (10): e110963. DOI: 10.1371/journal.pone.0110963. PMID: 25354277; PMCID: PMC4212976.
  13. Marmij N, Morgunova G, Esipov D, i dr. 8-Okso-2'-dezoksiguanozin: biomarker kletochnogo starenija i okislitel'nogo stressa ili potencial'noe lekarstvo protiv vozrastnyh boleznej? Klinicheskaja gerontologija. 2016; 22 (9–10): 46–47. Russian.
  14. Petersen S, Saretzki G, Von Zglinicki T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res. 1998; 239: 152–60.
  15. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem. 2002; 27: 339–44.
  16. Li JS, Miralles Fusté J, Simavorian T, et al. TZAP: A telomere-associated protein involved in telomere length control. Science. 2017; 10: 355 (6325): 638–41.
  17. Shishkina EA, Napier BA, Preston DL, Degteva MO Dose estimates and their uncertainties for use in epidemiological studies of radiation-exposed populations in the Russian Southern Urals. PLoS ONE. 2023; 18 (8): e0288479. Available from: https://doi.org/10.1371/journal.pone.0288479.
  18. IAEA. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. Vienna, Austria: IAEA. 2011; 229.
  19. Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thyminesubstituted polyamide. Sci. 1991; 254 (5037): 1497–500.
  20. Akhmadullina YuR, Vozilova AV, Krivoshchapova YaV. The effect of chronic exposure on the parameters of cytogenetic markers of senescence in the residents of the Techa riverside settlements. Extreme medicine. 2024; (2): 53–63. DOI: 10.47183/mes.2024.018.
  21. Hoffmann AA, Rieseberg LH. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation. Annu Rev Ecol Evol Syst. 2008; 39: 21–42.
  22. Eidelman YA, Salnikov IV, Slanina SV, Andreev SG. Chromosome folding promotes intrachromosomal aberrations under radiation- and nuclease-induced DNA breakage. Int J Mol Sci. 2021; 22 (22): 12186. DOI: 10.3390/ijms222212186.
  23. Jullien L, Mestre M, Roux P, Gire V. Eroded human telomeres are more prone to remain uncapped and to trigger a G2 checkpoint response. Nucleic Acids Res. 2013; 41 (2): 900–11.
  24. Vozilova AV. Assessment of the effect of chronic exposure on premature aging of human T-lymphocytes based on unstable chromosome aberrations. Extreme medicine. 2023; 2: 79–85. DOI: 10.47183/mes.2023.015.