Авторские права: © 2025 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Противовирусная активность мРНК, кодирующих внутриклеточные scFv-фрагменты антител к консервативным эпитопам вируса гриппа

Информация об авторах

Научно-исследовательский институт гриппа имени А. А. Смородинцева, Санкт-Петербург, Россия

Для корреспонденции: Сергей Анатольевич Клотченко
ул. Профессора Попова, 15/17, г. Санкт-Петербург, 197022, Россия; ur.liam@kitafsof

Информация о статье

Финансирование: исследование выполнено при финансовой поддержке Российского научного фонда, Соглашение № 24-25-00488: «Изучение противовирусного потенциала внутриклеточных scFv антител к гриппу» (руководитель — С. А. Клотченко), https://rscf.ru/project/24-25-00488/.

Вклад авторов: М. А. Плотникова — разработка конструкций, проведение экспериментов, регистрация и анализ результатов, статистическая обработка, написание и оформление рукописи; В. А. Олейник — проведение экспериментов, регистрация результатов; С. А. Клотченко — дизайн исследования, получение и характеристика препаратов мРНК, проведение экспериментов, регистрация и анализ результатов, редактирование рукописи.

Статья получена: 27.11.2025 Статья принята к печати: 10.12.2025 Опубликовано online: 26.12.2025
|
  1. Bender RG, et al. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: a systematic analysis from the Global Burden of Disease Study 2021. The Lancet Infectious Diseases. 2024; 24 (9): 974–1002. Available from: https://doi.org/10.1016/S1473-3099(24)00176-2.
  2. Lin JJ, Feramisco JR. Disruption of the in vivo distribution of the intermediate filaments in fibroblasts through the microinjection of a specific monoclonal antibody. Cell. 1981; 24 (1): 185–93. Available from: https://doi.org/10.1016/0092-8674(81)90514-6.
  3. Blose SH, Meltzer DI, Feramisco JR. 0-nm Filaments Are Induced to Collapse in Living Cells Microinjected with Monoclonal and Polyclonal Antibodies Against Tubulin. Journal of Cell Biology. 1984; 98: 847–58. Available from: https://doi.org/10.1083/jcb.98.3.847.
  4. Kallajoki M, et al. Microinjection of a monoclonal antibody against SPN antigen, now identified by peptide sequences as the NuMA protein, induces micronuclei in PtK2 cells. Journal of Cell Science. 1993; 104 (1): 139–50. Available from: https://doi.org/10.1242/jcs.104.1.139.
  5. Rabbitts TH. Intracellular Antibodies for Drug Discovery and as Drugs of the Future. Antibodies. 2023; 12 (1). Available from: https://doi.org/10.3390/antib12010024.
  6. Biocca S, Neuberger MS, Cattaneo A. Expression and targeting of intracellular antibodies in mammalian cells. The EMBO Journal. 1990; 9 (1): 101–8. Available from: https://doi.org/10.1002/j.1460-2075.1990.tb08085.x.
  7. Marschall ALJ, Dübel S, Böldicke T. Recent advances with ER targeted intrabodies. Advances in Experimental Medicine and Biology. 2016; 917: 77–93. Available from: https://doi.org/10.1007/978-3-319-32805-8_5.
  8. Gerondopoulos A, et al. A signal capture and proofreading mechanism for the KDEL-receptor explains selectivity and dynamic range in ER retrieval. eLife. 2021; 10. Available from: https://doi.org/10.7554/eLife.68380.
  9. Johnson AE, Van Waes MA. The Translocon: A Dynamic Gateway at the ER Membrane. Annual review of cell and developmental biology. 1999; 15 (1): 799–842. Available from: https://doi.org/10.1146/annurev.cellbio.15.1.799.
  10. Haryadi R, et al. Optimization of Heavy Chain and Light Chain Signal Peptides for High Level Expression of Therapeutic Antibodies in CHO Cells. PloS one. 2015; 10 (2). Available from: http://dx.doi.org/10.1371/journal.pone.0116878.
  11. Marschall ALJ, et al. Targeting antibodies to the cytoplasm. mAbs. 2011; 3 (1): 3–16. Available from: https://doi.org/10.4161/mabs.3.1.14110.
  12. Richardson JH, Wayne MA. Intracellular antibodies: development and therapeutic potential. Trends in biotechnology. 1995; 13 (8): 306– 10. Available from: https://doi.org/10.1016/S0167-7799(00)88970-2.
  13. Плотникова М. А., и др. scFv-фрагменты рекомбинантных антител к вирусу гриппа: получение и характеристика функциональной активности. БИОпрепараты. Профилактика, диагностика, лечение. Принято к публикации 12.12.2025. Available from: https://doi.org/10.30895/2221-996X-2025-728.
  14. Killian ML. Hemagglutination assay for influenza virus. Animal influenza virus. Animal Influenza Virus. Methods in Molecular Biology. 2014; 1161: 3–9. Available from: https://doi.org/10.1007/978-1-4939-0758-8_1.
  15. Plotnikova MA, et al. Antibody microarray immunoassay for screening and differential diagnosis of upper respiratory tract viral pathogens. Journal of Immunological Methods. 2020; 478: 112712. Available from: https://doi.org/10.1016/j.jim.2019.112712.
  16. Corti D, et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 2011; 333 (6044): 850–6. Available from: https://doi.org/10.1126/science.1205669.
  17. Krivitskaya VZ, et al. Detection and Differentiation of Current Influenza B Viruses by the Microculture Enzyme-Linked Immunosorbent Assay Using Monoclonal Antibodies. Applied Biochemistry and Microbiology. 2023; 59 (7): 1039–46. Available from: https://doi.org/10.1134/S0003683823070037.
  18. Biswas M, et al. Broadly neutralizing antibodies for influenza: Passive immunotherapy and intranasal vaccination. Vaccines. 2020; 8 (3): 424. Available from: https://doi.org/10.3390/vaccines8030424.
  19. Momont C, et al. A pan-influenza antibody inhibiting neuraminidase via receptor mimicry. Nature. 2023; 618 (7965): 590–7. Available from: https://doi.org/10.1038/s41586-023-06136-y.
  20. Heaton NS, et al. Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins. Proceedings of the National Academy of Sciences. 2013; 110 (50): 20248–53. Available from: https://doi.org/10.1073/pnas.1320524110.
  21. Klasse PJ. Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. Advances in biology. 2014; 2014 (1): 157895. Available from: https://doi.org/10.1155/2014/157895.
  22. Yamaizumi M, et al. Neutralization of diphtheria toxin in living cells by microinjection of antifragment A contained within resealed erythrocyte ghosts. Cell. 1978; 13 (2): 227–32. Available from: https://doi.org/10.1016/0092-8674(78)90191-5.
  23. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983; 302 (5909): 575–81. Available from: https://doi.org/10.1038/302575a0.
  24. Burke B, Warren G. Microinjection of mRNA coding for an anti-golgi antibody inhibits intracellular transport of a viral membrane protein. Cell. 1984; 36 (4): 847–56. Available from: https://doi.org/10.1016/0092-8674(84)90034-5.
  25. Cottignies-Calamarte A, Tudor D, Bomsel M. Antibody Fc-chimerism and effector functions: When IgG takes advantage of IgA. Frontiers in immunology. 2023; 14: 1037033. Available from: https://doi.org/10.3389/fimmu.2023.1037033.
  26. Tiller KE, Tessier PM. Advances in Antibody Design. Annual review of biomedical engineering. 2015; 17 (1): 191–216. Available from: https://doi.org/10.1146/annurev-bioeng-071114-040733.
  27. Helfrich W, et al. A rapid and versatile method for harnessing scFv antibody fragments with various biological effector functions. Journal of Immunological Methods. 2000; 237 (1–2): 131–45. Available from: https://doi.org/10.1016/s0022-1759(99)00220-3.
  28. Ahmad ZA, et al. scFv antibody: Principles and clinical application. Journal of Immunology Research. 2012; 2012 (1): 980250. Available from: https://doi.org/10.1155/2012/980250.
  29. Le Gall F, et al. Di-, tri- and tetrameric single chain Fv antibody fragments against human CD19: Effect of valency on cell binding. FEBS letters. 1999; 453 (1–2): 164–8. Available from: https://doi.org/10.1016/S0014-5793(99)00713-9.
  30. Kabayama H, et al. An ultra-stable cytoplasmic antibody engineered for in vivo applications. Nature communications. 2020; 11 (1): 336. Available from: https://doi.org/10.1038/s41467-019-13654-9.
  31. Marschall ALJ, Dübel S, Böldicke T. Specific in vivo knockdown of protein function by intrabodies. MAbs. 2015; 7 (6): 1010–35. Available from: https://doi.org/10.1080/19420862.2015.1076601.
  32. Karikó K, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005; 23 (2): С. 165–75. Available from: https://doi.org/10.1016/j.immuni.2005.06.008.
  33. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics-developing a new class of drugs. Nature reviews Drug discovery. 2014; 13 (10): 759–80. Available from: https://doi.org/10.1038/nrd4278.
  34. Jin Q, et al. The protective effect of a combination of human intracellular and extracellular antibodies against the highly pathogenic avian influenza H5N1 virus. Human Vaccines & Immunotherapeutics. 2022; 18 (1): 2035118. Available from: https://doi.org/10.1080/21645515.2022.2035118.
  35. Mukhtar MM, et al. Single-chain intracellular antibodies inhibit influenza virus replication by disrupting interaction of proteins involved in viral replication and transcription. The international journal of biochemistry & cell biology. 2009; 41 (3): 554–60. Available from: https://doi.org/10.1016/j.biocel.2008.07.001.
  36. Ashour J, et al. Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. Journal of virology. 2015; 89 (5): 2792–800. Available from: https://doi.org/10.1128/JVI.02693-14.
  37. Blavier J, et al. Targeting viral replication complexes with mRNA-encoded nanobodies: a new frontier for antiviral design. Drug Discovery Today. 2025; 104531. Available from: https://doi.org/10.1016/j.drudis.2025.104531.