ORIGINAL RESEARCH

Preliminary results of a controlled study of BCI-exoskeleton technology efficacy in patients with poststroke arm paresis

Frolov AA1,2, Mokienko OA1,3, Lyukmanov RKh1,3, Chernikova LA3, Kotov SV4, Turbina LG4, Bobrov PD1,2, Biryukova EV1,2, Kondur AA4, Ivanova GE1, Staritsyn AN1, Bushkova YuV1, Dzhalagoniya IZ2, Kurganskaya ME2,3, Pavlova OG2, Budilin SYu2, Aziatskaya GA3, Khizhnikova AE3, Chervyakov AV3, Lukyanov AL5, Nadareyshvily GG1
About authors

1 Institute of Higher Nervous Activity and Neurophysiology, RAS, Moscow, Russia

2 Pirogov Russian National Research Medical University, Moscow, Russia

3 Research Center of Neurology, Moscow, Russia

4 Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia

5 Municipal Clinical Hospital no. 31, Moscow, Russia

Correspondence should be addressed: Olesya Mokienko
Volokolamskoye shosse, d. 80, kab. 133, Moscow, Russia, 125367; ur.xednay@dm.aysel

About paper

Funding: the study was supported by the Ministry of Education and Science of the Russian Federation (Grant Agreement no. 14.607.21.0128 dated October 27, 2015), Russian Foundation Basic Research grants no. 16-04-01506а and 16-04-00962а.

Received: 2016-03-30 Accepted: 2016-04-07 Published online: 2017-01-05
|
  1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009 Aug; 8 (8): 741–54.
  2. Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014 Nov 12; 11: CD010820. DOI: 10.1002/14651858.CD010820.pub2.
  3. Shih JJ, Krusienski DJ, Wolpaw JR. Brain–computer interfaces in medicine. Mayo Clin Proc. 2012 Mar; 87 (3): 268–79.
  4. Mokienko OA, Chervyakov AV, Kulikova SN, Bobrov PD, Chernikova LA, Frolov AA, et al. Increased motor cortex excitability during motor imagery in brain–computer interface trained subjects. Front Comput Neurosci. 2013 Nov 22; 7: 168.
  5. Frolov AA, Gusek D, Bobrov PD, Mokienko OA, Chernikova LA, Konovalov RN. Localization of brain electrical activity sources and hemodynamic activity foci during motor imagery. Hum Physiol. 2014 May–Jun; 40 (3): С. 273–283.
  6. Mokienko OA, Chernikova LA, Frolov AA, Bobrov PD. Motor imagery and its practical application. Neurosci Behav Physiol. 2014 Jun; 44 (5): 483–489.
  7. Soekadar SR, Birbaumer N, Slutzky MW, Cohen LG. Brain–machine interfaces in neurorehabilitation of stroke. Neurobiol Dis. 2015 Nov; 83: 172–9.
  8. Grosse-Wentrup M, Mattia D, Oweiss K. Using brain–computer interfaces to induce neural plasticity and restore function. J Neural Eng. 2011 Apr; 8 (2): 025004. DOI: 10.1088/1741-2560/8/2/025004.
  9. Steenbergen B, Crajé C, Nilsen DM, Gordon AM. Motor imagery training in hemiplegic cerebral palsy: a potentially useful therapeutic tool for rehabilitation. Dev Med Child Neurol. 2009 Sep; 51 (9): 690–6.
  10. Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors (Basel). 2012; 12 (2): 1211–79.
  11. Vidal JJ. Toward direct brain–computer communication. Annu Rev Biophys Bioeng. 1973; 2: 157–80.
  12. Pfurtscheller G, Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol. 1979 Feb; 46 (2): 138–46.
  13. Ang KK, Guan C, Phua KS, Wang C, Zhou L, Tang KY, et al. Brain–computer interface–based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng. 2014 Jul 29; 7: 30.
  14. Ang KK, Chua KS, Phua KS, Wang C, Chin ZY, Kuah CW, et al. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain–Computer Interface Robotic Rehabilitation for Stroke. Clin EEG Neurosci. 2015 Oct; 46 (4): 310–20.
  15. Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz O, Brasil FL, et al. Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013 Jul; 74 (1): 100–8.
  16. Kotov SV, Turbina LG, Bobrov PD, Frolov AA, Pavlova OG, Kurganskaya ME, et al. Reabilitatsiya bol'nykh, perenesshikh insul't, s pomoshch'yu bioinzhenernogo kompleksa «interfeis mozg–komp'yuter + ekzoskelet». Zh Nevrol Psikhiatr Im S S Korsakova. 2014; 114 (12-2): 66–72. Russian.
  17. Kotov SV, Turbina LG, Bobrov PD, Frolov AA, Pavlova OG, Kurganskaya ME, et al. Primenenie kompleksa «interfeis “mozg–komp'yuter” i ekzoskelet» i tekhniki voobrazheniya dvizheniya dlya reabilitatsii posle insul'ta. Almanac of Clinical Medicine. 2015; (39): 15–21. Russian.
  18. Mokienko OA, Lyukmanov RKh, Chernikova LA, Suponeva NA, Piradov MA, Frolov AA. Brain–computer interface: The first experience of clinical use in Russia. Hum Physiol. 2016 Jan; 42 (1): 24–31.
  19. Biryukova EV, Pavlova OG, Kurganskaya ME, Bobrov PD, Turbina LG, Frolov AA, et al. Recovery of the motor function of the arm with the aid of a hand exoskeleton controlled by a brain–computer interface in a patient with an extensive brain lesion. Hum Physiol. 2016; 42 (1): 13–23.
  20. Compston A. Aids to the investigation of peripheral nerve injuries. Medical Research Council: Nerve Injuries Research Committee. His Majesty's Stationery Office: 1942; pp. 48 (iii) and 74 figures and 7 diagrams; with aids to the examination of the peripheral nervous system. By Michael O'Brien for the Guarantors of Brain. Saunders Elsevier: 2010; pp. [8] 64 and 94 Figures. Brain. 2010 Oct; 133 (10): 2838–44.
  21. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971 Mar; 9 (1): 97–113.
  22. Bocti C, Legault V, Leblanc N, Berger L, Nasreddine Z, Beaulieu-Boire I, et al. Vascular cognitive impairment: most useful subtests of the Montreal Cognitive Assessment in minor stroke and transient ischemic attack. Dement Geriatr Cogn Disord. 2013; 36 (3–4): 154–62.
  23. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987 Feb; 67 (2): 206–7.
  24. Frolov A, Húsek D, Bobrov P. Comparison of four classification methods for brain–computer interface. Neural Network World. 2011; 21 (2): 101–115.
  25. Bobrov PD, Korshakov AV, Roshchin V, Frolov AA. Baiesovskii podkhod k realizatsii interfeisa mozg–komp'yuter, osnovannogo na predstavlenii dvizhenii. Zh Vyssh Nerv Deiat Im I P Pavlova. 2012; 62 (1): 89–99. Russian.
  26. Kohavi R, Provost F. Glossary of terms. Special Issue of Applications of Machine Learning and the Knowledge Discovery Process. Mach Learn. 1998; 30 (2–3): 271–274.
  27. Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993 Jul; 73 (7): 447–54.
  28. Doussoulin SA, Rivas SR, Campos SV. [Validation of "Action Research Arm Test" (ARAT) in Chilean patients with a paretic upper limb after a stroke]. Rev Med Chil. 2012 Jan; 140 (1): 59–65. Spanish.
  29. Buch ER, Modir Shanechi A, Fourkas AD, Weber C, Birbaumer N, Cohen LG. Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain. 2012 Feb; 135 (Pt 2): 596–614.