ORIGINAL RESEARCH

Cartographic atlas of frequency variation for 45 pharmacogenetic markers in populations of Russia and its neighbor states

About authors

1 Bochkov Research Center for Medical Genetics, Moscow, Russia

2 Biobank of North Eurasia, Moscow, Russia

3 Vavilov Institute of General Genetics, Moscow, Russia

4 Lomonosov Moscow State University, Moscow, Russia

5 Kuban State Medical University, Krasnodar, Russia

6 Russian Medical Academy of Continuous Professional Education, Moscow, Russia

Correspondence should be addressed: Elena V. Balanovska
Moskvorechie, 1, Moscow, 115478; ur.liam@aksvonalab

About paper

Funding: the study was carried out under the State Assignment of the Russian Ministry of Science and Higher Education for the Research Center for Medical Genetics and Vavilov Institute of General Genetics.

Acknowledgement: the authors thank the donors for their participation, the Institute of General Genetics for the access to the database of genotypes, the Center for Precision Genome Editing and Genetic Technologies for Biomedicine of Pirogov Russian National Research Medical University (Moscow, Russia) for the opportunity to usemolecular genetic technologies.

Author contribution: Balanovska EV — data analysis, manuscript draft; Balanovsky OP — study design and supervision; Petrushenko VS — bioinformatic analysis; Koshel SM — map analysis, manuscript editing; Chernevskiy DK, Pocheshkhova EA — tabular data analysis; Mirzaev KB, Abdullaev SP — description of pharmacogenetic markers.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Research Center for Medical Genetics (Protocol № 3/1 dated September 5, 2018) and carried out on the samples obtained during the population genetic study of the gene pools of ethnic groups from Russia and its neighbor states. The donors gave voluntary informed consent to participate.

Received: 2020-11-06 Accepted: 2020-11-22 Published online: 2020-12-19
|
  1. Core ADME Gene List [internet]. www.pharmaadme.org. ©2020 — [cited 2020 Nov 4]. Available from: http://pharmaadme.org/ joomla/index.php?option=com_content&task=view&id=12&Itemid=27.
  2. pharmgkb.org [internet]. ©2001-2020 PharmGKB [cited 2020 Nov 4]. Available from: https://www.pharmgkb.org.
  3. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013; 94 (3): 317–23. DOI: 10.1038/clpt.2013.105.
  4. Lima JJ, Thomas CD, Barbarino J, Desta Z, Van Driest SL, El Rouby N, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Proton Pump Inhibitor Dosing. Clin Pharmacol Ther. 2020. DOI: 10.1002/ cpt.2015. Epub ahead of print.
  5. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin Pharmacol Ther. 2017; 102 (3): 397–404. DOI: 10.1002/cpt.668.
  6. Beutler E. G6PD: population genetics and clinical manifestations. Blood Rev. 1996; 10 (1): 45–52. DOI: 10.1016/s0268- 960x(96)90019-3.
  7. Urban TJ. Race, ethnicity, ancestry, and pharmacogenetics. Mt Sinai J Med. 2010; 77 (2): 133–9. DOI:10.1002/msj.20168.
  8. Hernandez W, Gamazon ER, Aquino-Michaels K, Smithberger E, O'Brien TJ, Harralson AF, et al. Integrated analysis of genetic variation and gene expression reveals novel variant for increased warfarin dose requirement in African Americans. J Thromb Haemost. 2017; 15 (4): 735–43. DOI: 10.1111/jth.13639.
  9. Rajman I, Knapp L, Morgan T, Masimirembwa C. African Genetic Diversity: Implications for Cytochrome P450-mediated Drug Metabolism and Drug Development. EBioMedicine. 2017; 17: 67–74. DOI: 10.1016/j.ebiom.2017.02.017.
  10. Duconge J, Ramos AS, Claudio-Campos K, Rivera-Miranda G, Bermúdez-Bosch L, Renta JY, et al. A Novel Admixture-Based Pharmacogenetic Approach to Refine Warfarin Dosing in Caribbean Hispanics. PLoS One. 2016; 11 (1): e0145480. DOI: 10.1371/journal.pone.0145480.
  11. Mizzi C, Dalabira E, Kumuthini J, Dzimiri N, Balogh I, Başak N, et al. A European Spectrum of Pharmacogenomic Biomarkers: Implications for Clinical Pharmacogenomics. PLoS One. 2016; 11 (9): e0162866. DOI: 10.1371/journal.pone.0162866.
  12. Li J, Lou H, Yang X, Lu D, Li S, Jin L, et al. Genetic architectures of ADME genes in five Eurasian admixed populations and implications for drug safety and efficacy. J Med Genet. 2014; 51 (9): 614–22. DOI: 10.1136/jmedgenet-2014-102530.
  13. Duconge J, Ruaño G. Admixture and ethno-specific alleles: missing links for global pharmacogenomics. Pharmacogenomics. 2016; 17 (14): 1479–82. DOI: 10.2217/pgs-2016-0115.
  14. Lonjou C, Thomas L, Borot N, Ledger N, de Toma C, LeLouet H, et al. A marker for Stevens-Johnson syndrome ...: ethnicity matters. Pharmacogenomics J. 2006; 6 (4): 265–8. DOI: 10.1038/ sj.tpj.6500356.
  15. Mirzaev KB, Fedorinov DS, Ivashchenko DV, Sychev DA. ADME pharmacogenetics: future outlook for Russia. Pharmacogenomics. 2019; 20 (11): 847–65. DOI: 10.2217/pgs-2019-0013.
  16. Mustafina OE, Tuktarova IA, Karimov DD, Somova Rs, Nasibullin TR. CYP2D6, CYP3A5, and CYP3A4 gene polymorphisms in Russian, Tatar, and Bashkir populations. Russ J Genet. 2015; 51 (1): 98– 107. DOI: 10.1134/S1022795415010081.
  17. Korytina G, Kochetova O, Akhmadishina L, Viktorova E, Victorova T. Polymorphisms of cytochrome p450 genes in three ethnic groups from Russia. Balkan Med J. 2012; 29 (3): 252–60. DOI:10.5152/ balkanmedj.2012.039.
  18. Kochetova OV, Korytina GF, Akhmadishina LZ, Victorova TV, Iskhakova GM. Analysis of the cytochrome P450 1A1 (CYP1A1) gene polymorphism in the ethnic groups of the republic of Bashkortostan. Russ J Genet. 2008; 44 (12): 1454–60. DOI: 10.1134/S1022795408120107.
  19. Korytina GF, Celousova OS, Akhmadishina LZ, Kochetova OV, Babenkova LI, Victorova TV. Assotiation of polymorphism of inflammatory mediators (IL1B, TNFA, LTA, IL8, IL6, ILRN, ILR4, TGFB, TLR4, DBF) genes with chronic lung disease in children. Meditsinskaya genetika. 2008; 7 (2). 17–25. Russian.
  20. Korytina GF, Akhmadishina LZ, Victorova TV. Frequencies of CYP1B1 and CYP2F1 polymorphic variants in three ethinc groups of Bashkortostan and in patients with chronic obstructive pulmonary disease. Mol Biol. 2010; 44 (1): 28–36. DOI: 10.1134/ S002689331001005X.
  21. Akhmadishina LZ, Korytina GF, Mingazova SR, Yanbaeva DG, Bakirov AB, Victorova TV. Rol' polimorfizma genov CYP1A1, EPHX1, GSTM1, GSTT1 i GSTP1 v razvitii khronicheskikh bronkhitov professional'nogo geneza. Ekologicheskaya genetika. 2005; (1): 11–7. Russian.
  22. Fedorova YY, Karunas AS, Nurgalieva AKh, Gra OA, Gimalova GF, Ramazanova NN, et al. Role of xenobiotic-metabolizing gene polymorphisms in allergic diseases susceptibility in Tatars. Meditsinskaya genetika. 2010; 9 (6): 28–35. Russian.
  23. Polonikov A, Kharchenko A, Bykanova M, Sirotina S, Ponomarenko I, Bocharova A, et al. Polymorphisms of CYP2C8, CYP2C9 and CYP2C19 and risk of coronary heart disease in Russian population. Gene. 2017; 627: 451–9. DOI: 10.1016/j. gene.2017.07.004.
  24. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, Brockmöller J, Frötschl R, Köpke K, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol. 2003; 59 (4): 303–12. DOI: 10.1007/s00228-003-0606-2.
  25. Gra O, Mityaeva O, Berdichevets I, Kozhekbaeva Z, Fesenko D, Kurbatova O, et al. Microarray-based detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 allele frequencies in native Russians. Genet Test Mol Biomarkers. 2010; 14 (3): 329–42. DOI: 10.1089/gtmb.2009.0158.
  26. Balanovska EV, Zhabagin MK, Agdzhoyan AT, Chukhryaeva MI, Markina NV, Balaganskaya OA, et al. Population biobanks: Organizational models and prospects of application in gene geography and personalized medicine. Russ J Genet. 2016; 52 (12): 1227–43. DOI: 10.1134/S1022795416120024.
  27. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics Knowledge for Personalized Medicine. Clinical Pharmacology & Therapeutics. 2012; 92 (4): 414–17. pharmgkb.org [internet]. ©2001–2020 «Very Important Pharmacogene» (VIP) [cited 2020 Nov 4]. Available from: https:// www.pharmgkb.org/vips/.
  28. Balanovsky OP, Gorin IO, Zapisetskaya YuS, Golubeva AA, Kostryukova ES, Balanovska EV. Interactions between gene pools of Russian and Finnish-speaking populations from Tver region: analysis of 4 million SNP markers Bulletin of RSMU. 2020; 6 (in print).
  29. Behar DM, Yunusbayev B, Metspalu M, Metspalu E, Rosset S, Parik J, et al. The genome-wide structure of the Jewish people. Nature. 2010; 466 (7303): 238–42. DOI: 10.1038/nature09103.
  30. Behar DM, Metspalu M, Baran Y, Kopelman NM, Yunusbayev B, Gladstein A, et al. No evidence from genome-wide data of a Khazar origin for the Ashkenazi Jews. Hum Biol. 2013; 85 (6): 859–900. DOI: 10.3378/027.085.0604.
  31. Chaubey G, Metspalu M, Choi Y, Mägi R, Romero IG, Soares P, et al. Population genetic structure in Indian Austroasiatic speakers: the role of landscape barriers and sex-specific admixture. Mol Biol Evol. 2011; 28 (2): 1013–24. DOI: 10.1093/molbev/msq288.
  32. Di Cristofaro J, Pennarun E, Mazières S, Myres NM, Lin AA, Temori SA, et al. Afghan Hindu Kush: where Eurasian sub-continent gene flows converge. PLoS One. 2013; 8 (10): e76748. DOI: 10.1371/ journal.pone.0076748.
  33. Fedorova SA, Reidla M, Metspalu E, Metspalu M, Rootsi S, Tambets K, et al. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia. BMC Evol Biol. 2013; 13: 127. DOI: 10.1186/1471-2148-13-127.
  34. Flegontov P, Changmai P, Zidkova A, Logacheva MD, Altınışık NE, Flegontova O, et al. Genomic study of the Ket: a Paleo-Eskimo-related ethnic group with significant ancient North Eurasian ancestry. Sci Rep. 2016; 6: 20768. DOI: 10.1038/srep20768.
  35. Haber M, Mezzavilla M, Xue Y, Comas D, Gasparini P, Zalloua P, et al. Genetic evidence for an origin of the Armenians from Bronze Age mixing of multiple populations. Eur J Hum Genet. 2016; 24 (6): 931–6. DOI: 10.1038/ejhg.2015.206.
  36. Kovacevic L, Tambets K, Ilumäe AM, Kushniarevich A, Yunusbayev B, Solnik A, et al. Standing at the gateway to Europe--the genetic structure of Western balkan populations based on autosomal and haploid markers. PLoS One. 2014; 9 (8): e105090. DOI: 10.1371/ journal.pone.0105090.
  37. Kushniarevich A, Utevska O, Chuhryaeva M, Agdzhoyan A, Dibirova K, Uktveryte I, et al. Genetic heritage of the Balto-Slavic speaking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal data. PLoS One. 2015; 10 (9): e0135820. DOI: 10.1371/journal.pone.0135820.
  38. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008; 319 (5866): 1100–4. DOI: 10.1126/science.1153717.
  39. Raghavan M, Skoglund P, Graf KE, Metspalu M, Albrechtsen A, Moltke I, et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature. 2014; 505 (7481): 87–91. DOI: 10.1038/nature12736.
  40. Raghavan M, DeGiorgio M, Albrechtsen A, Moltke I, Skoglund P, Korneliussen TS, et al. The genetic prehistory of the New World Arctic. Science. 2014; 345 (6200): 1255832. DOI: 10.1126/ science.1255832.
  41. Raghavan M, Steinrücken M, Harris K, Schiffels S, Rasmussen S, DeGiorgio M, et al. POPULATION GENETICS. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science. 2015; 349 (6250): aab3884. DOI: 10.1126/ science.aab3884
  42. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature. 2010; 463 (7282): 757–62. DOI: 10.1038/ nature08835.
  43. Yunusbayev B, Metspalu M, Järve M, Kutuev I, Rootsi S, Metspalu E, et al. The Caucasus as an asymmetric semipermeable barrier to ancient human migrations. Mol Biol Evol. 2012; 29 (1): 359–65. DOI: 10.1093/molbev/msr221.
  44. Yunusbayev B, Metspalu M, Metspalu E, Valeev A, Litvinov S, Valiev R, et al. The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia. PLoS Genet. 2015; 11 (4): e1005068. DOI: 10.1371/journal.pgen.1005068.
  45. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015; 4 (1): 7. DOI: 10.1186/ s13742-015-0047-8.
  46. Purcell S, Chang C. PLINK: Whole genome association analysis toolset. Version 1.9 [software]. [cited 2020 Nov 4]. Available from: www.cog-genomics.org/plink/1.9/.
  47. Balanovsky O, Dibirova K, Dybo A, Mudrak O, Frolova S, Pocheshkhova E, et al. Parallel Evolution of Genes and Languages in the Caucasus Region. Mol Biol Evol. 2011; 28 (10): 2905–20. DOI: 10.1093/molbev/msr126.
  48. Koshel SM. Geoinformatsionnye tekhnologii v genogeografii. V sbornike: Lur'e I. K., Kravtsova V. I., redaktory. Sovremennaya geograficheskaya kartografiya. M: Data+, 2012; p. 158–66. Russian.
  49. Balanovska EV, Balanovsky OP. Russkiy genofond na Russkoy ravnine. M.: Luch, 2007; 416 p. Russian.
  50. Balanovsky O, Zhabagin M, Agdzhoyan A, Chukhryaeva M, Zaporozhchenko V, Utevska O, et al. Deep phylogenetic analysis of haplogroup G1 provides estimates of SNP and STR mutation rates on the human Y-chromosome and reveals migrations of Iranic speakers. PLoS One. 2015; 10 (4): e0122968. DOI: 10.1371/journal.pone.0122968.
  51. Rychkov YuG, Balanovska EV. Genofond i genogeografiya naseleniya SSSR. Genetika. 1992; (28): 52–75. Russian.
  52. Balanovska EV, Grekhova LV, Rychkov YuG. Komp'yuternaya genogeografiya i arkheologiya: metody kartograficheskogo modelirovaniya rasprostraneniya material'noy kul'tury. V sbornike: Gorizonty antropologii. M.: Russkiy mir, 1997; p. 54–62. Russian.
  53. Berlyant AM. Kartografiya: Uchebnik dlya vuzov. M.: Aspekt Press, 2002; 336 p. Russian.
  54. Genes-Drugs [internet]. CPIC. 2020 [cited 2020 Nov 4]. Available from: https://cpicpgx.org/genes-drugs.
  55. Nurbaev SD, Balanovska EV. Genogeografiya i genofond. Otsenivanie nadezhnosti karty. V sbornike: Novye metody — novye podkhody v sovremennoy antropologii. M.: Staryy sad, 1997; p. 116–32. Russian.