ORIGINAL RESEARCH

Novel Klebsiella pneumoniae virulent bacteriophage KPPK108.1 capable of infecting the K108 serotype strains

Evseev PV1, Shneider MM1, Mikhailova YuV2, Shelenkov AA2, Yanushevich YuG3, Karlova MG4, Moiseenko AV4, Sokolova OS4, Shagin DA3
About authors

1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia

2 Central Research Institute of Epidemiology of Rospotrebnadzor, Moscow, Russia

3 Pirogov Russian National Research Medical University, Moscow, Russia

4 Lomonosov Moscow State University, Moscow, Russia

Correspondence should be addressed: Mikhail M. Shneider
Miklukho-Maklaya, 16/10, Moscow, 117997, Russia; ur.liam@nhs_mm

About paper

Funding: the study was funded by the Ministry of Health of the Russian Federation (EGISU R&D № 121052800048-3).

Acknowledgements: the authors wish to thank the Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, for advice on research methods.

Author contribution: Shagin DA — research conceptualization, study management, manuscript writing; Evseev PV, Shelenkov AA — formal analysis of sequencing data, manuscript editing; Shneider MM — methodology, study management; Mikhailova YuV — sequencing, data validation; Yanushevich YuG, Moiseenko AV, Karlova MG — methodology; Sokolova OS — electron microscopy, methodology.

Received: 2021-12-08 Accepted: 2021-12-22 Published online: 2021-12-30
|
  1. Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol Mol Biol Rev. 2016; 80 (3): 629–61.
  2. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R, Thomson NR, et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom. 2016; 2 (12): e000102.
  3. Colombet J, Robin A, Lavie L, Bettarel Y, Cauchie HM, SimeNgando T. Virioplankton “pegylation”: use of PEG (polyethylene glycol) to concentrate and purify viruses in pelagic ecosystems. J Microbiol Methods. 2007; 71 (3): 212–9.
  4. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19 (5): 455–77.
  5. Drulis-Kawa Z, Mackiewicz P, Kęsik-Szeloch A, MaciaszczykDziubinska E, Weber-Dąbrowska B, Dorotkiewicz-Jach A, et al. Isolation and characterisation of KP34 — a novel φKMV-like bacteriophage for Klebsiella pneumoniae. Appl Microbiol Biotechnol. 2011; 90 (4): 1333–45.
  6. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30 (14): 2068–9.
  7. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215 (3): 403–10.
  8. Gabler F, Nam S-Z, Till S, Mirdita M, Steinegger M, Söding J, et al. Protein Sequence Analysis Using the MPI Bioinformatics Toolkit. Current Protocols in Bioinformatics. 2020; 72 (1): e108.
  9. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015; 10 (6): 845–58.
  10. Geneious. Bioinformatics Software for Sequence Data Analysis. Geneious [cited 2021 Nov 11]. Available from: https://www.geneious.com/
  11. Home — Genome — NCBI [cited 2021 Nov 11]. Available from: https://www.ncbi.nlm.nih.gov/genome.
  12. Moraru C, Varsani A, Kropinski AM. VIRIDIC — A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. Viruses. 2020; 12 (11): 1268.
  13. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016; 66 (2): 1100–3.
  14. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30 (9): 1312–3.
  15. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008; 25 (7): 1307–20.
  16. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research. 2002; 30 (14): 3059–66.
  17. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011; 27 (7): 1009–10.
  18. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596 (7873): 583–9.
  19. Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, et al. Protein complex prediction with AlphaFold-Multimer. 2021 [cited 2021 Dec 6]. 2021.10.04.463034. Available from: https:// www.biorxiv.org/content/10.1101/2021.10.04.463034v1.
  20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Research. 2000; 28 (1): 235–42.
  21. Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, et al. Improvements to the APBS biomolecular solvation software suite. Protein Science. 2018; 27 (1): 112–28.
  22. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25 (13): 1605–12.
  23. Schwarzer D, Buettner FFR, Browning C, Nazarov S, Rabsch W, Bethe A, et al. A Multivalent Adsorption Apparatus Explains the Broad Host Range of Phage phi92: a Comprehensive Genomic and Structural Analysis. Journal of Virology. 2012; 86 (19): 10384–98.
  24. Evseev PV, Lukianova AA, Shneider MM, Korzhenkov AA, Bugaeva EN, Kabanova AP, et al. Origin and Evolution of Studiervirinae Bacteriophages Infecting Pectobacterium: Horizontal Transfer Assists Adaptation to New Niches. Microorganisms. 2020; 8 (11): 1707.
  25. Roberts GA, Stephanou AS, Kanwar N, Dawson A, Cooper LP, Chen K, et al. Exploring the DNA mimicry of the Ocr protein of phage T7. Nucleic Acids Res. 2012; 40 (16): 8129–43.
  26. Zavilgelsky GB, Rastorguev SM. Antirestriction proteins ArdA and Ocr as efficient inhibitors of type I restriction-modification enzymes. Mol Biol. 2009; 43 (2): 241.
  27. Isaev A, Drobiazko A, Sierro N, Gordeeva J, Yosef I, Qimron U, et al. Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence. Nucleic Acids Res. 2020; 48 (10): 5397–406.
  28. Zampara A, Sørensen MCH, Grimon D, Antenucci F, Vitt AR, Bortolaia V, et al. Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria. Sci Rep. 2020; 10 (1): 12087.
  29. Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol. 1996; 178 (16): 4885–93.
  30. Kim H, Kim M, Bai J, Lim J-A, Heu S, Ryu S. Colanic Acid Is a Novel Phage Receptor of Pectobacterium carotovorum subsp. carotovorum Phage POP72. Frontiers in Microbiology. 2019; 10: 143.