METHOD

Sensors for analysis of drugs, drug-drug interactions, and catalytic activity of enzymes

About authors

1 Institute of Biomedical Chemistry (IBMC), Moscow, Russia

2 Pirogov Russian National Research Medical University, Moscow, Russia

Correspondence should be addressed: Lyubov E. Agafonova
Pogodinskaya, 10/8, Moscow, 119121, Russia; ur.liam@abulavonofaga

About paper

Funding: the study was carried out within the framework of the Russian Federation fundamental research program for the long-term period for 2021–2030.

Author contribution: Agafonova LE — experimental procedure, data processing, manuscript writing, building graphs; Bulko TV — sample preparation, experimental procedure; Kuzikov AV — statistical data processing, manuscript writing; Masamrekh RA — sample preparation, experimental procedure; Shumyantseva VV — concept, manuscript writing, data analysis.

Received: 2022-02-07 Accepted: 2022-02-21 Published online: 2022-02-28
|
  1. Ahuja S, Dong MW. Handbook of pharmaceutical analysis by HPLC. Elsevier, Amsterdam, 2005; 679 p.
  2. Akbari M, Shayani-Jam H, Yaftian MR, Parinejad M. Electrochemical oxidation of acetaminophen in the presence of diclofenac and piroxicam — Synthesis of new derivatives and kinetic investigation of toxic quinone imine/drugs interactions. Journal of Electroanalytical Chemistry. 2018; 827: 160–6. DOI: 10.1016/J.JELECHEM.2018.09.021.
  3. Cernat A, Tertis M, Sandulescu R, Bedioui F, Cristea A, Cristea C. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Analytica Chimica Acta. 2015; 886: 16–28. DOI: 10.1016/j.aca.2015.05.044.
  4. Shumyantseva VV, Bulko TV, Kuzikov AV, Masamrekh RA, Konyakhina AYu, Romanenko I, et al. All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochimica Acta. 2020; 336: 135579. DOI: 10.1016/j.electacta.2019.135579.
  5. Kuzikov AV, Filippova TA, Masamrekh RA, Shumyantseva VV. Electrochemical determination of (S)-7-hydroxywarfarin for analysis of CYP2C9 catalytic activity. Journal of Electroanalytical Chemistry. 2022; 904: 115937. DOI: 10.1016/j.jelechem.2021.115937.
  6. Qian L, Durairaj S, Prins S, Chen A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosensors and Bioelectronics. 2021; 175: 112836. DOI: 10.1016/j.bios.2020.112836.
  7. Manikandan P, Nagini S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Current Drug Targets. 2018; 19 (1): 38–54. DOI: 10.2174/1389450118666170125144557.
  8. Hamadeh IS, Patel JN, Rusin S, Tan AR. Personalizing aromatase inhibitor therapy in patients with breast cancer. Cancer Treatment Reviews. 2018; 70: 47–55. DOI: 10.1016/j.ctrv.2018.07.014.
  9. Zhu Y, Liu X, Jia J. Electrochemical detection of natural estrogens using a graphene/ordered mesoporous carbon modified carbon paste electrode. Analytical Methods. 2015; 7: 8626–31. DOI: 10.1039/C5AY01833A.
  10. Moraes FC, Rossi B, Donatoni MC, de Oliveira KT, Pereira EC. Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Analytica Chimica Acta. 2015; 881: 37–43. DOI: 10.1016/j.aca.2015.04.043.
  11. Lin X, Li Y. A sensitive determination of estrogens with a Pt nanoclusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosensors and Bioelectronics. 2006; 22 (2): 253–9. DOI: 10.1016/j.bios.2006.01.005.
  12. Hu S, Wu K, Yi H, Cui D. Voltammetric behavior and determination of estrogens at Nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide. Analytica Chimica Acta. 2002; 464 (2): 209–16. DOI: 10.1016/S0003-2670(02)00496-8.
  13. Kuzikov AV, Masamrekh RA, Filippova TA, Haurychenka YI, Gilep AA, Shkel TV, et al. Electrochemical oxidation of estrogens as a method for CYP19A1 (aromatase) electrocatalytic activity determination. Electrochimica Acta. 2020; 333: 135539. DOI: 10.1016/j.electacta.2019.135539.
  14. Kulys J, D’Costa EJ. Printed amperometric sensor based on TCNQ and cholinesterase. Biosensors and Bioelectronics. 1991; 6 (2): 109. DOI: 10.1016/0956-5663(91)87034-9.
  15. Patel M, Patel DA, Gajra B. Validation of Analytical Procedures: Methodology ICH-Q2B. International journal of review article pharmaceutical innovations. 2011; 1 (2): 45.
  16. Jalalvand AR. A study originated from combination of electrochemistry and chemometrics for investigation of the inhibitory effects of ciprofloxacin as a potent inhibitor on cytochrome P450. Microchemical Journal. 2020; 157: 105104. DOI: 10.1016/j.microc.2020.105104.
  17. Shumyantseva VV, Agafonova LE, Bulko TV, Kuzikov AV, Masamrekh RA, Yuan J, et al. Electroanalysis of Biomolecules: Rational Selection of Sensor Construction. Biochemistry (Moscow). 2021; 86: 140–51. DOI: 10.1134/S0006297921140108.
  18. Hasoň S, Fojta M, Ostatná V. Label-free electrochemical analysis of purine nucleotides and nucleobases at disposable carbon electrodes in microliter volumes. Journal of Electroanalytical Chemistry. 2019; 847 (15): 113252. DOI: 10.1016/J. JELECHEM.2019.113252.
  19. Fan Y, Liu JH, Lu HT, Zhang Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2graphene modified glassy carbon electrode. Colloids and surfaces. B: Biointerfaces. 2011; 85 (2): 289–92. DOI: 10.1016/j.colsurfb.2011.02.041.
  20. Pandey SK, Yadav S, Goel Y, Temre MK, Singh VK, Singh SM. Molecular docking of anti-inflammatory drug diclofenac with metabolic targets: Potential applications in cancer therapeutics. Journal of Theoretical Biology. 2019; 465 (21): 117–25. DOI: 10.1016/j.jtbi.2019.01.020.
  21. Arisan ED, Akar RO, Rencuzogullari O, Yerlikaya OP, Gurkan AC, Akın B, et al. The molecular targets of diclofenac differs from ibuprofen to induce apoptosis and epithelial mesenchymal transition due to alternation on oxidative stress management p53 independently in PC3 prostate cancer cells. Prostate Internationa. 2019; 7 (4): 156–65. DOI: 10.1016/j.prnil.2019.09.003.
  22. Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM. Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicology Letters. 2018; 284: 70–8. DOI: 10.1016/j. toxlet.2017.11.038.
  23. Nakanishi K, Uehara S, Kusama T, Inoue T, Shimura K, Kamiya Y, et al. In vivo and in vitro diclofenac 5-hydroxylation mediated primarily by cytochrome P450 3A enzymes in common marmoset livers genotyped for P450 2C19 variants. Biochemical Pharmacology. 2018; 152: 272–8. DOI: 10.1016/j.bcp.2018.04.002.
  24. Mohammadi A, Moghaddam A, Alikhani E, Eilkhanizadeh K, Mozaffari S. Electrochemical quantification of fluoxetine in pharmaceutical formulation using carbon nanoparticles. Micro & Nano Letters. 2013; 8 (12): 853–7. DOI: 10.1049/MNL.2013.0671.
  25. Goodarzian M, Khalilzade M, Karimi F, Gupta V, Keyvanfard M, Bagheri H, et al. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. Journal of Molecular Liquids. 2014; 197: 114–9. DOI: 10.1016/J.MOLLIQ.2014.04.037.
  26. Sarhangzadeh K, Khatami AA, Jabbari M, Bahari S. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. Journal of Applied Electrochemistry. 2013; 43: 1217–24. DOI: 10.1007/s10800-013-0609-3.
  27. Karuppiah C, Cheemalapati S, Chen S, Palanisamy S. Carboxylfunctionalized graphene oxide-modified electrode for the electrochemical determination of nonsteroidal anti-inflammatory drug diclofenac. Ionics. 2015; 21: 231–8. DOI: 10.1007/s11581014-1161-9.
  28. Shalauddin M, Akhter S, Basirun WJ, Bagheri S, Anuar NS, Johan MR. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochimica Acta. 2019; 304: 32333. DOI: 10.1016/J.ELECTACTA.2019.03.003.
  29. Jiokeng SLZ, Tonle IK, Walcarius A. Amino-attapulgite/mesoporous silica composite films generated by electroassisted self-assembly for the voltammetric determination of diclofenac. Sensors and Actuators B Chemical. 2019; 287: 296–305. DOI: 10.1016/j.snb.2019.02.038.
  30. Karikalan N, Karthik R, Chen Sh-M, Velmurugan M, Karuppiah Ch. Electrochemical properties of the acetaminophen on the screen printed carbon electrode towards the high performance practical sensor applications. Journal of Colloid and Interface Science. 2016; 483: 109–17. DOI:10.1016/j.jcis.2016.08.028.