ORIGINAL RESEARCH

Prefrontal cortex transcranial theta-burst stimulation frequency-dependent effects on cognitive functions

About authors

Research Center of Neurology, Moscow, Russia

Correspondence should be addressed: Alexandra G. Poydasheva
Volokolamskoye shosse, 80, Moscow, 125310, Russia; ur.ygoloruen@avehsadyop

About paper

Funding: the study was supported by the Russian Science Foundation (RSF), grant № 22-25-00078, https://www.rscf.ru/project/22-25-00078/

Author contribution: Suponeva NA, Bakulin IS, Poydasheva AG, Piradov MA — study concept; Suponeva NA, Bakulin IS, Poydasheva AG, Sinitsyn DO, Piradov MA — study planning and design; Bakulin IS, Poydasheva AG, Zabirova AH, Lagoda DYu — research procedure and data acquisition; Bakulin IS, Poydasheva AG, Sinitsyn DO, Zabirova AH — data analysis; all authors — data interpretation; Suponeva NA, Bakulin IS, Poydasheva AG — manuscript draft writing; all authors — manuscript editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Research Center of Neurology (protocol 3-7/22 dated 20 April 2022), it was conducted in accordance with the principles of the Declaration of Helsinki; the informed consent was submitted by all study participants.

Received: 2023-10-07 Accepted: 2023-11-13 Published online: 2023-12-07
|
  1. Lefaucheur JP. Transcranial magnetic stimulation. Handb Clin Neurol. 2019; 160: 559–80. DOI: 10.1016/B978-0-444-640321.00037-0.
  2. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol. 2020; 131 (2): 474–528. DOI: 10.1016/j.clinph.2019.11.002.
  3. Begemann MJ, Brand BA, Ćurčić-Blake B, Aleman A, Sommer IE. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med. 2020; 50 (15): 2465–86. DOI: 10.1017/S0033291720003670.
  4. Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front Hum Neurosci. 2015; 9: 303. DOI: 10.3389/fnhum.2015.00303.
  5. Tang A, Thickbroom G, Rodger J. Repetitive transcranial magnetic stimulation of the brain: mechanisms from animal and experimental models. Neuroscientist. 2017; 23 (1): 82–94. DOI: 10.1177/1073858415618897.
  6. Larson J, Munkácsy E. Theta-burst LTP. Brain Res. 2015; 1621: 38–50. DOI: 10.1016/j.brainres.2014.10.034.
  7. Rounis E, Huang YZ. Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp Brain Res. 2020; 238 (7–8): 1707–14. DOI: 10.1007/ s00221-020-05880-1.
  8. Wischnewski M, Schutter DJ. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul. 2015; 8 (4): 685–92. DOI: 10.1016/j.brs.2015.03.004.
  9. Pabst A, Proksch S, Médé B, Comstock DC, Ross JM, Balasubramaniam R. A systematic review and meta-analysis of the efficacy of intermittent theta burst stimulation (iTBS) on cognitive enhancement. Neurosci Biobehav Rev. 2022; 135: 104587. DOI: 10.1016/j.neubiorev.2022.104587.
  10. Bakulin IS, Zabirova AH, Poydasheva AG, Sinitsyn DO, Lagoda DY, Suponeva NA, et al. Effects of the metaplasticity-based thetaburst transcranial stimulation protocols on working memory performance. Bulletin of RSMU. 2023; 2: 33–41. DOI: 10.24075/ vrgmu.2023.011. Russian.
  11. Philip NS, Leuchter AF, Cook IA, Massaro J, Goethe JW, Carpenter LL. Predictors of response to synchronized transcranial magnetic stimulation for major depressive disorder. Depress Anxiety. 2019; 36: 278–85. DOI: 10.1002/da.22862.
  12. Brownjohn PW, Reynolds JN, Matheson N, Fox J, Shemmell JB. The effects of individualized theta burst stimulation on the excitability of the human motor system. Brain Stimul. 2014; 7 (2): 260–8. DOI: 10.1016/j.brs.2013.12.007.
  13. Poydasheva AG, Bakulin IS, Sinitsyn DO, Zabirova AH, Lagoda DYu, Suponeva NA, et al. Literature review on theta-gamma phaseamplitude coupling: physiological basics, analysis methods, and perspectives of translation into clinical practice. Annals of Clinical and Experimental Neurology. 2022; 16 (4): 71–9. DOI: 10.54101/ ACEN.2022.4.9. Russian.
  14. Lisman JE, Jensen O. The θ-γ neural code. Neuron. 2013; 77 (6): 1002–16. DOI: 10.1016/j.neuron.2013.03.007.
  15. Brooks H, Goodman MS, Bowie CR, Zomorrodi R, Blumberger DM, Butters MA, et al. Theta-gamma coupling and ordering information: a stable brain-behavior relationship across cognitive tasks and clinical conditions. Neuropsychopharmacology. 2020; 45 (12): 2038–47. DOI: 10.1038/s41386-020-0759-z.
  16. Abubaker M, Al Qasem W, Kvašňák E. Working memory and cross-frequency coupling of neuronal oscillations. Front Psychol. 2021; 12: 756661. DOI: 10.3389/fpsyg.2021.756661.
  17. Goodman MS, Kumar S, Zomorrodi R, Ghazala Z, Cheam ASM, Barr MS et al. Theta-gamma coupling and working memory in Alzheimer's dementia and mild cognitive impairment. Front Aging Neurosci. 2018; 10: 101. DOI: 10.3389/fnagi.2018.00101.
  18. Chung SW, Sullivan CM, Rogasch NC, Hoy KE, Bailey NW, Cash RFH, et al. The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: a TMS-EEG study. Hum Brain Mapp. 2019; 40 (2): 608–27. DOI: 10.1002/hbm.24398
  19. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971; 9 (1): 97–113.
  20. Mueller ST, Piper BJ. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. J Neurosci Methods. 2014; 222: 250–9. DOI: 10.1016/j.jneumeth.2013.10.024.
  21. Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958; 55 (4): 352–8. DOI: 10.1037/h0043688.
  22. Haatveit BC, Sundet K, Hugdahl K, Ueland T, Melle I, Andreassen OA. The validity of d prime as a working memory index: results from the "Bergen n-back task". J Clin Exp Neuropsychol. 2010; 32 (8): 871–80. DOI: 10.1080/13803391003596421.
  23. Turi Z, Mittner M, Lehr A, Bürger H, Antal A, Paulus W. θ-γ Cross-Frequency Transcranial Alternating Current Stimulation over the Trough Impairs Cognitive Control. eNeuro. 2020; 7 (5): ENEURO.0126-20.2020. DOI: 10.1523/ENEURO.0126-20.2020.
  24. Akkad H, Dupont-Hadwen J, Kane E, Evans C, Barrett L, Frese A, et al. Increasing human motor skill acquisition by driving theta-gamma coupling. Elife. 2021; 10: e67355. DOI: 10.7554/eLife.67355.
  25. Gordon PC, Belardinelli P, Stenroos M, Ziemann U, Zrenner C. Prefrontal theta phase-dependent rTMS-induced plasticity of cortical and behavioral responses in human cortex. Brain Stimul. 2022; 15 (2): 391–402. DOI: 10.1016/j.brs.2022.02.006.
  26. Hoy KE, Bailey N, Michael M, Fitzgibbon B, Rogasch NC, Saeki T, Fitzgerald PB. Enhancement of working memory and task-related oscillatory activity following intermittent Theta Burst Stimulation in healthy controls. Cereb Cortex. 2016; 26 (12): 4563–73. DOI: 10.1093/cercor/bhv193.
  27. Ngetich R, Jin D, Li W, Song B, Zhang J, Jin Z, Li L. Enhancing visuospatial working memory performance using intermittent Theta-Burst Stimulation over the right dorsolateral prefrontal cortex. Front Hum Neurosci. 2022; 16: 752519. DOI: 10.3389/fnhum.2022.752519.
  28. Brem AK, Fried PJ, Horvath JC, Robertson EM, Pascual-Leone A. Is neuroenhancement by noninvasive brain stimulation a net zerosum proposition? Neuroimage. 2014; 85 Pt 3 (03): 1058–68. DOI: 10.1016/j.neuroimage.2013.07.038.
  29. Vosskuhl J, Huster RJ, Herrmann CS. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Front Hum Neurosci. 2015; 9: 257. DOI: 10.3389/fnhum.2015.00257.
  30. Wolinski N, Cooper NR, Sauseng P, Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018; 16 (3): e2005348. DOI: 10.1371/journal.pbio.2005348.