ORIGINAL RESEARCH

Activation of microglia in the brain of spontaneously hypertensive rats

About authors

1 Institute of Experimental Medicine, St Petersburg, Russia

2 St Petersburg State University, St Petersburg, Russia

Correspondence should be addressed: Valeria V. Guselnikova
Acad. Pavlov, 12, Saint-Petersburg, 197376, Russia; ur.xednay@aiirelav.avocinlesug

About paper

Funding: the study was funded by the Russian Science Foundation, project № 22-25-00105, https://rscf.ru/project/22-25-00105/.

Author contribution: Guselnikova VV — literature analysis, analysis and interpretation of the results, preparation of the manuscript; Razenkova VA — development of protocols for immunofluorescent reactions, confocal laser microscopy; Sufieva DA — histological examination of biological material, performing immunohistochemical reactions for light microscopy; Korzhevskii DE — concept development, research planning, manuscript editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Federal State Budgetary Scientific Institution "IEM" (protocol № 1/22 dated February 18, 2022, protocol № 3/19 dated April 25, 2019), and was conducted in accordance with the provisions of the Declaration of Helsinki (2013)

Received: 2023-06-05 Accepted: 2023-06-20 Published online: 2023-06-27
|
  1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 populationrepresentative studies with 104 million participants. Lancet. 2021; 398 (10304): 957–980. DOI: 10.1016/S0140-6736(21)01330-1.
  2. Erina AM, Rotar OP, Solntsev VN, Shalnova SA, Deev AD, Baranova EI, et al. Epidemiology of arterial hypertension in Russian Federation — importance of choice of criteria of diagnosis. Kardiologiia. 2019; 59 (6): 5–11. DOI: 10.18087/ cardio.2019.6.2595
  3. Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, et al. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023; 8 (1): 168. DOI: 10.1038/s41392-023-01430-7.
  4. Meissner A. Hypertension and the brain: a risk factor for more than heart disease. Cerebrovasc Dis. 2016; 42 (3–4): 255–62. DOI: 10.1159/000446082.
  5. Cohen EM, Mohammed S, Kavurma M, Nedoboy PE, Cartland S, Farnham MMJ, Pilowsky PM. Microglia in the RVLM of SHR have reduced P2Y12R and CX3CR1 expression, shorter processes, and lower cell density. Auton Neurosci. 2019; 216: 9–16. DOI: 10.1016/j.autneu.2018.12.002.
  6. Doris PA. Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat. Physiol genomics. 2017; 49 (11): 601–17. DOI: 10.1152/physiolgenomics.00065.2017.
  7. Pravenec M, Kurtz TW. Recent advances in genetics of the spontaneously hypertensive rat. Curr Hypertens Rep. 2010; 12 (1): 5–9. DOI: 10.1007/s11906-009-0083-9.
  8. Leong XF, Ng CY, Jaarin K. Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis. Biomed Res Int. 2015; 2015: 528757. DOI: 10.1155/2015/528757.
  9. Korzhevskii DE, Sukhorukova EG, Kirik OV, Grigorev IP. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur J Histochem. 2015; 59 (3): 2530. DOI: 10.4081/ejh.2015.2530.
  10. Crowe AR, Yue W. Semi-quantitative Determination of Protein Expression Using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio-protocol. 2019; 9 (24): e3465. DOI: 10.21769/BioProtoc.3465.
  11. Kirik OV, Korzhevskij DEh. Marker makrofagov ED1(CD68) v kletkax golovnogo mozga krysy. V sbornike: Materialy IV mezhdunarodnoj nauchnoj konferencii «Sovremennye problemy nejrobiologii»; 18-20 maya 2023 g.; Yaroslavl': FGBOU VO YaGMU Minzdrava Rossii, 2023; 85 c. Russian.
  12. Kaiser D, Weise G, Möller K, Scheibe J, Pösel C, Baasch S, et al. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol Commun. 2014; 2: 169. DOI: 10.1186/s40478-014-0169-8.
  13. Guselnikova VV, Razenkova VA, Sufieva DA, Korzhevskii DE. Microglia and putative macrophages of the subfornical organ: structural and functional features. Bulletin of RSMU. 2022; (2): 50–7. DOI: 10.24075/brsmu.2022.020.
  14. Shen XZ, Li Y, Li L, Shah KH, Bernstein KE, Lyden P, Shi P. Microglia participate in neurogenic regulation of hypertension. Hypertension. 2015; 66 (2): 309–16. DOI: 10.1161/HYPERTENSIONAHA.115.05333.
  15. Bajwa E, Klegeris A. Neuroinflammation as a mechanism linking hypertension with the increased risk of Alzheimer’s disease. Neural Regeneration Research. 2022; 17 (11): 2342–6. DOI: 10.4103/1673-5374.336869.
  16. Galloway DA, Phillips AEM, Owen DRJ, Moore CS. Phagocytosis in the Brain: Homeostasis and Disease. Front Immunol. 2019; 10: 790. DOI: 10.3389/fimmu.2019.00790.
  17. Gabandé-Rodríguez E, Keane L, Capasso M. Microglial phagocytosis in aging and Alzheimer's disease. J Neurosci Res. 2020; 98 (2): 284–98. DOI: 10.1002/jnr.24419.
  18. Jurga AM, Paleczna M, Kuter KZ. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front Cell Neurosci. 2020; 14: 198. DOI: 10.3389/fncel.2020.00198.
  19. Waller R, Baxter L, Fillingham DJ, Coelho S, Pozo JM, Mozumder M, et al. Iba-1-/CD68+ microglia are a prominent feature of ageassociated deep subcortical white matter lesions. PLoS One. 2019; 14 (1): e0210888. DOI: 10.1371/journal.pone.0210888.
  20. Minett T, Classey J, Matthews FE, Fahrenhold M, Taga M, Brayne C,et al. MRC CFAS. Microglial immunophenotype in dementia with Alzheimer's pathology. J Neuroinflammation. 2016; 13 (1): 135. DOI: 10.1186/s12974-016-0601-z.