Copyright: © 2024 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

OPINION

Deep learning in modelling the protein–ligand interaction: new pathways in drug development

Barykin AD1,2, Chepurnykh TV1, Osipova ZM1,3
About authors

1 Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia

2 Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia

3 Pirogov Russian National Research Medical University, Moscow, Russia

Correspondence should be addressed: Zinaida Mikhailovna Osipova
Miklukho-Maklaya, 16/10, Moscow, 117997, Russia; ur.hcbi@avoksakz

About paper

Funding: the study was supported by the Russian Science Foundation grant, project № 22-44-02024 (https://rscf.ru/project/22-44-02024/).

Author contribution: Barykin AD — literature review, manuscript writing, Chepurnykh TV — concept, literature review, manuscript writing and editing, Osipova ZM — project management, manuscript editing.

Received: 2023-12-06 Accepted: 2024-01-22 Published online: 2024-02-08
|
  1. Lazo JS. Rear-view mirrors and crystal balls: a brief reflection on drug discovery. Mol Interv. 2008; 8 (2): 60–3. DOI: 10.1124/mi.8.2.1.
  2. Blanes-Mira C, Fernández-Aguado P, de Andrés-López J, Fernández-Carvajal A, Ferrer-Montiel A, Fernández-Ballester G. Comprehensive survey of consensus docking for highthroughput virtual screening. Molecules. 2023; 28 (1): 175. DOI: 10.3390/molecules28010175.
  3. Zhao L, Zhu Y, Wang J, Wen N, Wang C, Cheng L. A brief review of protein–ligand interaction prediction. Comput Struct Biotechnol J. 2022; 20: 2831–8. DOI: 10.1016/j.csbj.2022.06.004.
  4. Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017; 9: 91–102. DOI: 10.1007/s12551-016-0247-1. PubMed PMID: 28510083.
  5. Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, et al. Comprehensive evaluation of ten docking programs on a diverse set of protein– ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys. 2016; 18: 12964–75. DOI: 10.1039/c6cp01555g.
  6. Perez JJ, Perez RA, Perez A. Computational modeling as a tool to investigate PPI: from drug design to tissue engineering. Front Mol Biosci. 2021; 8: 681617. DOI: 10.3389/fmolb.2021.681617. PubMed PMID: 34095231.
  7. Santos LHS, Ferreira RS, Caffarena ER. Integrating molecular docking and molecular dynamics simulations. Methods Mol Biol. 2019; 2053: 13–34. DOI: 10.3389/fmolb.2021.681617.
  8. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596: 583–9. DOI: 10.1038/s41586-021-03819-2.
  9. Crampon K, Giorkallos A, Deldossi M, Baud S, Steffenel LA. Machine-learning methods for ligand–protein molecular docking. Drug Discov Today. 2021; 27(1): 151–64. DOI: 10.1016/j.drudis.2021.09.007.
  10. Jiménez J, Doerr S, Martínez-Rosell G, Rose AS, De Fabritiis G. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics. 2017; 33 (19): 3036–42. DOI: 10.1093/bioinformatics/btx350.
  11. Kandel J, Tayara H, Chong KT. PUResNet: prediction of proteinligand binding sites using deep residual neural network. J Cheminform. 2021; 13: 65. DOI: 10.1186/s13321-021-00547-7.
  12. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022; 23: 40–55. DOI: 10.1038/s41580-021-00407-0.
  13. Wang Y, Jiao Q, Wang J, Cai X, Zhao W, Cui X. Prediction of proteinligand binding affinity with deep learning. Comput Struct Biotechnol J. 2023; 21: 5796–806. DOI: 10.1016/j.csbj.2023.11.009.
  14. Zhao L, Zhu Y, Wang J, Wen N, Wang C, Cheng L. A brief review of protein–ligand interaction prediction. Comput Struct Biotechnol J. 2022; 20: 2831–8. DOI: 10.1016/j.csbj.2022.06.004.
  15. Stokes JM, Yang K,Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A deep learning approach to antibiotic discovery. Cell. 2020; 180: P688–702.E13. DOI: 10.1016/j.cell.2020.01.021.
  16. Arnold C. Inside the nascent industry of AI-designed drugs. Nat Med. 2023; 29: 1292–5. DOI: 10.1038/s41591-023-02361-0.
  17. Yang B, Li K, Zhong X, Zou J. Implementation of deep learning in drug design. MedComm — Fut Med. 2022; 1: e18. DOI: 10.1002/mef2.18.